Comment by btilly
Comment by btilly 5 days ago
I wish that I had specific suggestions.
My overall wish that more people understood why, in intuitionist mathematics, uncountable means "self-referential" and not "more". No infinite set can have "more" elements than any other, because all things that exist are things that can be written down. And therefore there is a single countable list that includes all things that might possibly have any mathematical existence at all. Anything not on that list does not truly exist.
(By internet coincidence, I recently wrote https://math.stackexchange.com/questions/5074503/can-pa-prov... which ends with the beginning of the construction of that list, starting with the Peano axioms. https://news.ycombinator.com/item?id=44269822 is about that answer.)
Of course Formalists simply write down some axioms, start constructing proofs, and don't worry about what it really means. In what sense do uncountable hordes of real numbers that can never be specified in any way, truly exist? It doesn't matter. These are the axioms that we chose, and that is the statement that we came up with.
I have no idea of whether there is a way to formalize or prove the following idea. If there is, it would be good to mechanize it.
All notions about uncountable sets being larger than countable ones, require separating the notion of truth from the reasoning required to establish that truth.
A nit, but:
> Strictly speaking, a programming language doesn't really need comments. "But Lisp has them, and puts them in double quotes."
Lisp has comments, but they aren't generally contained in double quotes, you've tossed a lot of strings into your program and called them comments. Comments are either marked with ; (comment to end of line, like //) with conventions on how many semicolons to use in particular places, or comment blocks with #| comment |# (nestable version of /* */). You can add documentation to many definitions, like functions, using strings which may be what you're thinking of but that happens inside the definition like with this:
Which is a comment, but it's unusual to use strings as comments outside of contexts like that. Also, if you're going to use strings as comments you can make them multi-line instead of doing with: The other reason I'm posting this nit is that if anyone reads your blog/answer and tries to use comments as you've described them inside of expressions they'll be very confused about why it's behaving incorrectly. There's no reason to mislead people, this is not a comment: