Comment by btilly
Comment by btilly 5 days ago
It is certainly easier to prove interesting theorems with formalism. You don't get caught up with such basic things like whether or not it is always possible to tell that one real number is bigger than another.
But formalism leads to having to accept conclusions that some of us don't like. I already referred to the existence of uncountably many things that cannot in any useful way ever be specified. If you include the axiom of choice, you get the Banach-Tarski paradox. Mathematicians debated that one for a while, but now generally accept it.
My favorite example of a weird conclusion comes from https://en.wikipedia.org/wiki/Robertson%E2%80%93Seymour_theo.... We can non-constructively prove the following facts. Any class of graphs that is closed under the graph minor operation (for example planar graphs), has a finite set of forbidden graph minors that completely characterize the graph (in the case of planar graphs, K5 and K3,3). In general, there is no way to find those forbidden graph minors. Even if you were given the complete list, you couldn't necessarily verify that the list was correct. You cannot necessarily even find an upper bound on how big this set is.
By "cannot necessarily" I mean, "it is sometimes unprovable".
In what sense can a finite set exist and be finite when it is unfindable, unverifiable, and has unboundable size?
To make this concrete, there are 17,523 known forbidden minors for the toroidal graphs. We don't know how to find more. We don't know if we have the full list. And we don't have an upper bound on how many more of them there are to be found.
You're free to accept this ephemeral claim to existence as actual existence. But this existence isn't very useful for us.
> In what sense can a finite set exist and be finite when it is unfindable, unverifiable, and has unboundable size?
In the same sense that we could say that every computer program must either eventually terminate or never terminate without most people thinking there's a major philosophical problem here.
And by the way, the very same question can be (and has been) levelled at constructivism: in what sense does a result that would take longer than the lifetime of the universe to compute exist, as it is unfindable and unverifiable?
Look, I think that it is interesting to work with constructive axioms, but I don't think that humans philosophically reject non-constructive results. It's one thing to say that we can learn interesting things in constructive mathematics and another to say there's a fundamental problem with non-constructive mathematics.
> But formalism leads to having to accept conclusions that some of us don't like.
At least in Hilbert's sense, I don't think formalism says quite what you claim it says. He says that some mathematical statements or results apply to things we can see in the world and could be assigned meaning through, say, correspondence to physics. But other mathematical statements don't say anything about the physical world, and therefore the question of their "actual meaning" is not reason to reject them as long as they don't lead to "real" results (in the first class of statements) that contradict physical reality.
Formalism, therefore, doesn't require you to accept or reject any particular meaning that the second class of statements may or may not have. If a statement in the second class says that some set exists, you don't have to assign that "existence" any meaning beyond the formula itself.