Comment by btilly
I was responding to this statement of yours, "I don't think that humans philosophically reject non-constructive results."
Some of the humans who have thought about it do reject them. Some of the humans who have thought about it don't reject them.
Most humans, including most mathematicians, have never truly thought about it.
> Some of the humans who have thought about it do reject them.
I think they reject them only if they misrepresent Hilbert's formalism, because formalism does not assign them any meaning of truth beyond the symbolic. It makes no statement that could be rejected: a mathematical theorem that proves a set "exists" does not necessarily make any claim about its "actual" existence (unlike, say, Platonism). You asked in what sense does such a set exist, and Hilbert would say, great question, which is why I don't claim there necessarily is any such sense.
What those who reject Hilbert's formalism reject is the validity of a system of mathematics where only some but not all propositions are "externally" meaningful, but such a rejection, I think, can only be on aesthetic grounds, because, again, for Hilbert, all "valid" foundations must agree with physical reality when it comes to statements that could be assigned physical meaning. If ZFC led to any result that doesn't agree with physical reality, Hilbert would reject it, too. But it hasn't yet.