Comment by practal
Gödel's incompleteness theorem tells you why it is a good idea to separate semantics (notion of truth) from syntax (reasoning). Because some things are true, although you cannot prove that they are.
Some people now put forward from this the idea that for the natural numbers we know, it is NOT either true or false if for example the twin prime conjecture holds. That is nonsense. It is just that our methods of proof are strictly weaker than our notion of truth is.
That this is so is not even surprising! It is a fact of life that what is true is not necessarily what you can prove to be true. Innocent people imprisoned are an example of that. Guilty people going free another. What is maybe surprising is that what is true in what we perceive as the "real world" is also true in mathematics, which we imagine to be an "ideal realm". But mathematics is ALSO part of the "real world"; if you understand this, it is not so surprising. Yes, I am a platonist, and I think that everybody who isn't is just plain wrong and confused.
Intensional functions are just a special case of extensional functions. Where extensional functions are defined on mathematical objects, intensional functions are extensional functions defined on representations of mathematical objects (which are also mathematical objects, by the way), but pretend to be acting on the mathematical objects themselves, not their representations. That is really all there is to it, it is not a deep philosophical mystery. To do so can of course be very useful!