Comment by Timwi
Comment by Timwi 3 days ago
What makes me skeptical here is that the author claims that fields have a property that is necessary to explain this, and yet physicists have not given that property a name, so he has to invent one (“stiffness”). If the quantity appears in equations, I find it hard to believe that it was never given a name. Can anyone in the field of physics elucidate?
The author isn't inventing anything. He's just dumbing it down in an extreme way so that non-physicists could have the faintest hope of understanding it. Wich seems odd, because if you actually want to understand any of this you should prepare to spend two or three years in university level math classes first. The truth is that in reality all this is actually a lot more complex. In the Higgs field (or any simple scalar field for that matter) for example, there is a free parameter that we could immediately identify as "mass" in the way described in the article. But weirdly enough, this is not the mass of the Higgs boson (because of some complicated shenanigans). Even more counterintuitive, fermionic (aka matter) fields and massive bosonic fields (i.e. the W and Z bosons mentioned in the article) in the Standard Model don't have any mass term by themselves at all. They only get something that looks (and behaves) like a mass term from their coupling to the Higgs field. So it's the "stiffness" of the Higgs field (highly oversimplified) that gives rise to the "stiffness" of the other fields through complex interactions governed by symmetries. And to put it to the extreme, the physical mass you can measaure in a laboratory is something that depends on the energy scale at which you perform your experiments. So even if you did years of math and took an intro to QFT class and finally think you begin to understand all this, Renormalization Group Theory comes in kicks you back down. If you go really deep, you'll run into issues like Landau Poles and Quantum Triviality and the very nature of what perturbation theory can tell us about reality after all. In the end you will be two thirds through grad school by the time you can comfortably discuss any of this. The origin of mass is a really convoluted construct and these low-level discussions of it will always paint a tainted picture. If you want the truth, you can only trust the math.