Comment by flohofwoe
Comment by flohofwoe a day ago
> low level libraries in Zig, just as it is in C
Did you write any Zig code yet? In terms of enforced correctness in the language (e.g. no integer promotion, no implicit 'dangerous' casts, null-safety, enforced error handling, etc...) and runtime safety (range-, nullptr-, integer-overflow-checks etc...), Zig is much closer to Rust than it is to C and C++.
It "just" doesn't solve static memory safety and some (admittedly important) temporal memory safety issues (aka "use-after-free"), but it still makes it much harder to accidentially trigger memory corruption as a side effect in most situations that C and C++ let slip through via a mix of compile errors and runtime checks (and you get ASAN/UBSAN automatically enabled in debug builds, a debug allocator which detects memory leaks and use-after-free for heap-allocations (unfortunately not for stack allocations), and proper runtime stack traces - things that many C/C++ toolchains are still missing or don't enable by default).
There is still one notable issue: returning a reference to stack memory from a function - this is something that many unexperienced Zig programmers seem to stumble into, especially since Zig's slice syntax looks so 'innocent' (slices look too similar to arrays, but arrays are values, while slices are references - e.g. 'fat pointers') - and which IMHO needs some sort of solution (either a compile time error via watertight escape analysis, or at least some sort runtime check which panics when trying to access 'stale' data on the stack) - and maybe giving slices their own distinct syntax that doesn't overlap with arrays might also help a bit.
I mean, there's no question that Zig, also in its current state, is vast improvement over C or even C++ - for the "small stuff". It is much more pleasant to use.
But there is still the "big stuff" - the things that have a fundamental, architectural impact. Things like: Will my program be multithreaded? Will I have many systems that interact? Will my program be maximally memory-efficient? Do I have the capacity (or money) to ensure correctness if I say "yes" to any of that?
The most important consideration in any software project is managing architectural complexity. Zig is better, yes, but not a paradigm shift. If you say "yes" to any of the above, you are in the same world of pain (or expenses) as you would be in C or C++. This is the reason that Rust is interesting: It makes things feasible/cheap that were previously very hard/expensive, at a fundamental level.