Comment by simonask
Comment by simonask a day ago
I think the argument is that it is also extremely difficult to write low level libraries in Zig, just as it is in C. You will just only notice the difficulty at some later point after writing the code, potentially in production.
> low level libraries in Zig, just as it is in C
Did you write any Zig code yet? In terms of enforced correctness in the language (e.g. no integer promotion, no implicit 'dangerous' casts, null-safety, enforced error handling, etc...) and runtime safety (range-, nullptr-, integer-overflow-checks etc...), Zig is much closer to Rust than it is to C and C++.
It "just" doesn't solve static memory safety and some (admittedly important) temporal memory safety issues (aka "use-after-free"), but it still makes it much harder to accidentially trigger memory corruption as a side effect in most situations that C and C++ let slip through via a mix of compile errors and runtime checks (and you get ASAN/UBSAN automatically enabled in debug builds, a debug allocator which detects memory leaks and use-after-free for heap-allocations (unfortunately not for stack allocations), and proper runtime stack traces - things that many C/C++ toolchains are still missing or don't enable by default).
There is still one notable issue: returning a reference to stack memory from a function - this is something that many unexperienced Zig programmers seem to stumble into, especially since Zig's slice syntax looks so 'innocent' (slices look too similar to arrays, but arrays are values, while slices are references - e.g. 'fat pointers') - and which IMHO needs some sort of solution (either a compile time error via watertight escape analysis, or at least some sort runtime check which panics when trying to access 'stale' data on the stack) - and maybe giving slices their own distinct syntax that doesn't overlap with arrays might also help a bit.