Comment by btilly
Comment by btilly 5 days ago
Spoken like a true formalist.
It doesn't really have to mean anything when we say that the reals are a larger set than the natural numbers - that's just the conclusion of the game that we are playing.
What fraction of people who "know" that there are more reals than natural numbers, do you think really understand that this is not an eternal verity of mathematics, but only a conclusion that follows from a particular set of rules that we're playing the mathematics game with?
> What fraction of people who "know" that there are more reals than natural numbers, do you think really understand that this is not an eternal verity of mathematics, but only a conclusion that follows from a particular set of rules that we're playing the mathematics game with?
The claim that there are more reals than naturals holds given classical ZF(C) set theory. But there are alternative set theories in which the reals are countable, e.g. NFU+AxCount. These alternative set theories ensure all reals are countable by rendering Cantor’s diagonalisation argument invalid, since their axioms are too weak to validate it. But, they contain all the same reals as the high school mathematics concept of “reals”. So, there are many reals, and that some of them are countable and others are not are indeed “eternal truths” (it is an eternal truth that whatever axioms have the consequences they do), but the everyday (non-expert) concept of reals isn’t any of them in particular - and it is unclear if the dominance of classical notions in mainstream professional mathematics was historically inevitable or a historical accident - maybe, on the other side of the galaxy, there exists some alien civilisation, in which different foundations of mathematics are mainstream, because their mathematics took a different evolutionary course from ours - maybe for them, reals are classically countable, and uncountability is an exotic notion belonging to alternative foundations of mathematics