Comment by zozbot234
"Cantor's diagonalization argument" is best understood as a mere special case of Lawvere's fixed-point theorem. Lawvere's theorem is really the meat of the argument, and it's also the part that is very easy for exotic systems to "accept", since it's close to a purely logical argument. Whether these systems truly accept "Cantor's argument" is perhaps only a matter of perception and intuition, that people may perhaps disagree about.
It does not matter what your best understanding of Cantor's diagonalization argument is. In some mathematical systems it means, "there are more reals than natural numbers", and in others it means, "the reals encode self-reference in a more direct way than the natural numbers do".
The result is that it is possible for the acceptance of the argument to lead to very different consequences about what we then conclude.