Comment by neom
wow.
I have been posting on hackernews "I have dyscalculia" for years in hopes for a comment like this, basically praying someone like you would reply with the right "thinking framework" for me - THANK YOU! This is the first time I've heard this, thought about this, and I sort of understand what you mean, if you're able to expand on it in any way, that concept, maybe I can think how I do it in other areas I can map it? I also have dyslexia, and have not found a good strategy for phonics yet, and I'm now 40, so I'm not sure I ever will hehe :))
I even struggle with times tables because the lifting is really hard for me for some reason, it always amazes me people can do 8x12 in their heads.
You're welcome :)
The foundations for these concepts were laid by Piaget and Brissiaud, but most of their work is in french. In English, "Young children reinvent arithmetic" by Kamii is an excellent and practically oriented book based on Piaget's theories, that you may find useful. Although it is 250 pages.
This approach has become mainstream in maths teaching today, but unfortunately often misunderstood by teachers. The point of using different strategies to arrive at the same answer in arithmetics is NOT that children should memorize different strategies, but that they should be given as many tools as possible to increase the chance that they are able to play around with and compress the concept being learned.
The clearest expression of the concept of compression is maybe in this paper, I don't know if it helps or if it's too academic.
https://files.eric.ed.gov/fulltext/EJ780177.pdf