Comment by neom
wow.
I have been posting on hackernews "I have dyscalculia" for years in hopes for a comment like this, basically praying someone like you would reply with the right "thinking framework" for me - THANK YOU! This is the first time I've heard this, thought about this, and I sort of understand what you mean, if you're able to expand on it in any way, that concept, maybe I can think how I do it in other areas I can map it? I also have dyslexia, and have not found a good strategy for phonics yet, and I'm now 40, so I'm not sure I ever will hehe :))
I even struggle with times tables because the lifting is really hard for me for some reason, it always amazes me people can do 8x12 in their heads.
Just a tangent, but there's a nice trick for 8 x 12.
In algebra, you learn that (a - b)(a + b) = a^2 - b^2. It's not too hard to spot this when it's all variables with a little practice but it's easy to overlook that you can apply this to arithmetic too anywhere that you can rewrite a problem as (a-b)(a+b). This happens when the difference between the two numbers you're trying to multiply is even.
For a, take the halfway point between the two numbers, and for b, take half the difference between the numbers. So a = (8 + 12) / 2 = 10. b = (12 - 8) / 2 = 2.
Here, 8 = 10 - 2 and 12 = 10 + 2. So you can do something like (10 - 2)(10 + 2) = 10^2 - 2^2 = 100 - 4 = 96.
It's kind of a tossup if it's more useful on these smaller problems but it can be pretty fun to apply it to something like 17 x 23 which looks daunting on its own but 17 x 23 = (20-3)(20+3) = 20^2 - 3^2 = 400 - 9 = 391