Fabrice Bellard Releases MicroQuickJS
(github.com)1217 points by Aissen 21 hours ago
1217 points by Aissen 21 hours ago
If this had been available in 2010, Redis scripting would have been JavaScript and not Lua. Lua was chosen based on the implementation requirements, not on the language ones... (small, fast, ANSI-C). I appreciate certain ideas in Lua, and people love it, but I was never able to like Lua, because it departs from a more Algol-like syntax and semantics without good reasons, for my taste. This creates friction for newcomers. I love friction when it opens new useful ideas and abstractions that are worth it, if you learn SmallTalk or FORTH and for some time you are lost, it's part of how the languages are different. But I think for Lua this is not true enough: it feels like it departs from what people know without good reasons.
I don't love a good deal of Lua's syntax, but I do think the authors had good reasons for their choices and have generally explained them. Even if you disagree, I think "without good reasons" is overly dismissive.
Personally though, I think the distinctive choices are a boon. You are never confused about what language you are writing because Lua code is so obviously Lua. There is value in this. Once you have written enough Lua, your mind easily switches in and out of Lua mode. Javascript, on the other hand, is filled with poor semantic decisions which for me, cancel out any benefits from syntactic familiarity.
More importantly, Lua has a crucial feature that Javascript lacks: tail call optimization. There are programs that I can easily write in Lua, in spite of its syntactic verbosity, that I cannot write in Javascript because of this limitation. Perhaps this particular JS implementation has tco, but I doubt it reading the release notes.
I have learned as much from Lua as I have Forth (SmallTalk doesn't interest me) and my programming skill has increased significantly since I switched to it as my primary language. Lua is the only lightweight language that I am aware of with TCO. In my programs, I have banned the use of loops. This is a liberation that is not possible in JS or even c, where TCO cannot be relied upon.
In particular, Lua is an exceptional language for writing compilers. Compilers are inherently recursive and thus languages lacking TCO are a poor fit (even if people have been valiantly forcing that square peg through a round hole for all this time).
Having said all that, perhaps as a scripting language for Redis, JS is a better fit. For me though Lua is clearly better than JS on many different dimensions and I don't appreciate the needless denigration of Lua, especially from someone as influential as you.
> For me though Lua is clearly better than JS on many different dimensions and I don't appreciate the needless denigration of Lua, especially from someone as influential as you.
Is it needless? It's useful specifically because he is someone influential, and someone might say "Lua was antirez's choice when making redis, and I trust and respect his engineering, so I'm going to keep Lua as a top contender for use in my project because of that" and him being clear on his choices and reasoning is useful in that respect. In any case where you think he has a responsibility to be careful what he says because of that influence, that can also be used in this case as a reason he should definitely explain his thoughts on it then and now.
> I think the distinctive choices are a boon. You are never confused about what language you are writing because Lua code is so obviously Lua. There is value in this.
This. And not just Lua , but having different kind of syntax for scripting languages or very high level languages signal it is something entirely different, and not C as in system programming language.
The syntax is also easier for people who dont intend to make programming as their profession, but simply want something done. It used to be the case in the old days people would design simple PL for new beginners, ActionScript / Flash era and even Hypercard before that. Unfortunately the industry is no longer interested in it, and if anything intend to make every as complicated as possible.
> Lua has a crucial feature that Javascript lacks: tail call optimization.
I'm not familiar with Lua, but I expect tco to be a feature of the compiler, not of the language. Am I wrong?
You’re wrong in the way in which many people are wrong when they hear about a thing called “tail-call optimization”, which is why some people have been trying to get away from the term in favour of “proper tail calls” or something similar, at least as far as R5RS[1]:
> A Scheme implementation is properly tail-recursive if it supports an unbounded number of active tail calls.
The issue here is that, in every language that has a detailed enough specification, there is some provision saying that a program that makes an unbounded number of nested calls at runtime is not legal. Support for proper tail calls means that tail calls (a well-defined subgrammar of the language) do not ever count as nested, which expands the set of legal programs. That’s a language feature, not (merely) a compiler feature.
[1] https://standards.scheme.org/corrected-r5rs/r5rs-Z-H-6.html#...
I don't think you're wrong per se. This is a "correct" way of thinking of the situation, but it's not the only correct way and it's arguably not the most useful.
A more useful way to understand the situation is that a language's major implementations are more important than the language itself. If the spec of the language says something, but nobody implements it, you can't write code against the spec. And on the flip side, if the major implementations of a language implement a feature that's not in the spec, you can write code that uses that feature.
A minor historical example of this was Python dictionaries. Maybe a decade ago, the Python spec didn't specify that dictionary keys would be retrieved in insertion order, so in theory, implementations of the Python language could do something like:
>>> abc = {}
>>> abc['a'] = 1
>>> abc['b'] = 2
>>> abc['c'] = 3
>>> abc.keys()
dict_keys(['c', 'a', 'b'])
But the CPython implementation did return all the keys in insertion order, and very few people were using anything other than the CPython implementation, so some codebases started depending on the keys being returned in insertion order without even knowing that they were depending on it. You could say that they weren't writing Python, but that seems a bit pedantic to me.In any case, Python later standardized that as a feature, so now the ambiguity is solved.
It's all very tricky though, because for example, I wrote some code a decade that used GCC's compare-and-swap extensions, and at least at that time, it didn't compile on Clang. I think you'd have a stronger argument there that I wasn't writing C--not because what I wrote wasn't standard C, but because the code I wrote didn't compile on the most commonly used C compiler. The better approach to communication in this case, I think, is to simply use phrases that communicate what you're doing: instead of saying "C", say "ANSI C", "GCC C", "Portable C", etc.--phrases that communicate what implementations of the language you're supporting. Saying you're writing "C" isn't wrong, it's just not communicating a very important detail: what implementations of the compiler can compile your code. I'm much more interested in effectively communicating what compilers can compile a piece of code than pedantically gatekeeping what's C and what's not.
Re: TCO
Does the language give any guarantee that TCO was applied? In other words can it give you an error that the recursion is not of tail call form? Because I imagine a probability of writing a recursion and relying on it being TCO-optimized, where it's not. I would prefer if a language had some form of explicit TCO modifier for a function. Is there any language that has this?
Although it’s a bit weird, Able Forth has the explicit word ~
https://github.com/ablevm/able-forth/blob/current/forth.scr
I do prefer this as it keeps the language more regular (fewer surprises)
Sounds a bit like Clojure's "recur". https://clojuredocs.org/clojure.core/recur
> as my primary language
I'd love to hear more how it is, the state of the library ecosystem, language evolution (wasn't there a new major version recently?), pros/cons, reasons to use it compared to other languages.
About tail-calls, in other languages I've found sometimes a conversion of recursive algorithm to a flat iterative loop with stack/queue to be effective. But it can be a pain, less elegant or intuitive than TCO.
Lua isn't my primary programming language now, but it was for a while. My personal experience on the library ecosystem was:
It's definitely smaller than many languages, and this is something to consider before selecting Lua for a project. But, on the positive side: With some 'other' languages I might find 5 or 10 libraries all doing more or less the same thing, many of them bloated and over-engineered. But with Lua I would often find just one library available, and it would be small and clean enough that I could easily read through its source code and know exactly how it worked.
Another nice thing about Lua when run on LuaJIT: extremely high CPU performance for a scripting language.
In summary: A better choice than it might appear at first, but with trade-offs which need serious consideration.
I do not think your compiler argument in support of TCO is very convincing.
Do you really need to write compilers with limitless nesting? Or is nesting, say, 100.000 deep enough, perhaps?
Also, you'll usually want to allocate some data structure to create an AST for each level. So that means you'll have some finite limit anyway. And that limit is a lot easier to hit in the real world, as it applies not just to nesting depth, but to the entire size of your compilation unit.
> More importantly, Lua has a crucial feature that Javascript lacks: tail call optimization. There are programs that I can easily write in Lua, in spite of its syntactic verbosity, that I cannot write in Javascript because of this limitation. Perhaps this particular JS implementation has tco, but I doubt it reading the release notes.
> [...] In my programs, I have banned the use of loops. This is a liberation that is not possible in JS or even c, where TCO cannot be relied upon.
This is not a great language feature, IMO. There are two ways to go here:
1. You can go the Python way, and have no TCO, not ever. Guido van Rossum's reasoning on this is outlined here[1] and here[2], but the high level summary is that TCO makes it impossible to provide acceptably-clear tracebacks.
2. You can go the Chicken Scheme way, and do TCO, and ALSO do CPS conversion, which makes EVERY call into a tail call, without language user having to restructure their code to make sure their recursion happens at the tail.
Either of these approaches has its upsides and downsides, but TCO WITHOUT CPS conversion gives you the worst of both worlds. The only upside is that you can write most of your loops as recursion, but as van Rossum points out, most cases that can be handled with tail recursion, can AND SHOULD be handled with higher-order functions. This is just a much cleaner way to do it in most cases.
And the downsides to TCO without CPS conversion are:
1. Poor tracebacks.
2. Having to restructure your code awkwardly to make recursive calls into tail calls.
3. Easy to make a tail call into not a tail call, resulting in stack overflows.
I'll also add that the main reason recursion is preferable to looping is that it enables all sorts of formal verification. There's some tooling around formal verification for Scheme, but the benefits to eliminating loops are felt most in static, strongly typed languages like Haskell or OCaml. As far as I know Lua has no mature tooling whatsoever that benefits from preferring recursion over looping. It may be that the author of the post I am responding to finds recursion more intuitive than looping, but my experience contains no evidence that recursion is inherently more intuitive than looping: which is more intuitive appears to me to be entirely a function of the programmer's past experience.
In short, treating TCO without CPS conversion as a killer feature seems to me to be a fetishization of functional programming without understanding why functional programming is effective, embracing the madness with none of the method.
EDIT: To point out a weakness to my own argument: there are a bunch of functional programming language implementations that implement TCO without CPS conversion. I'd counter by saying that this is a function of when they were implemented/standardized. Requiring CPS conversion in the Scheme standard would pretty clearly make Scheme an easier to use language, but it would be unreasonable in 2025 to require CPS conversion because so many Scheme implementations don't have it and don't have the resources to implement it.
EDIT 2: I didn't mean for this post to come across as negative on Lua: I love Lua, and in my hobby language interpreter I've been writing, I have spent countless hours implementing ideas I got from Lua. Lua has many strengths--TCO just isn't one of them. When I'm writing Scheme and can't use a higher-order function, I use TCO. When I'm writing Lua and can't use a higher order function, I use loops. And in both languages I'd prefer to use a higher order function.
[1] https://neopythonic.blogspot.com/2009/04/tail-recursion-elim...
[2] https://neopythonic.blogspot.com/2009/04/final-words-on-tail...
EDIT 3: Looking at Lua's overall implementation, it seems to be focused on being fast and lightweight.
I don't know why Lua implemented TCO, but if I had to guess, it's not because it enables you to replace loops with recursion, it's because it... optimizes tail calls. It causes tail calls to use less memory, and this is particularly effective in Lua's implementation because it reuses the stack memory that was just used by the parent call, meaning it uses memory which is already in the processor's cache.
The thing is, a loop is still going to be slightly faster than TCOed recursion, because you don't need to move the arguments to the tail call function into the previous stack frame. In a loop your counters and whatnot are just always using the same memory location, no copying needed.
Where TCO really shines is in all the tail calls that aren't replacements for loops: an optimized tail call is faster than a non-optimized tail call. And in real world applications, a lot of your calls are tail calls!
I don't necessarily love the feature, for the reasons that I detailed in the previous post. But it's not a terrible problem, and I think it at makes sense as an optimization within the context of Lua's design goals of being lightweight and fast.
> I do think the authors had good reasons for their choices and have generally explained them
I'm fairly certain antirez is the author of redis
> it feels like it departs from what people know without good reasons.
Lua was first released in 1993. I think that it's pretty conventional for the time, though yeah it did not follow Algol syntax but Pascal's and Ada's (which were more popular in Brazil at the time than C, which is why that is the case)!
Ruby, which appeared just 2 years later, departs a lot more, arguably without good reasons either? Perl, which is 5 years older and was very popular at the time, is much more "different" than Lua from what we now consider mainstream.
We had a lot problems embedding Ruby in a multithreaded C program as the garbage collector tries to scan memory between the threads (more details here: https://gitlab.com/nbdkit/nbdkit/-/commit/7364cbaae809b5ffb6... )
Perl, Python, OCaml, Lua and Rust were all fine (Rust wasn't around in 2010 of course).
I'm reving _why's syck right now. Turns out my fork from 2013 was still the most advanced. It doesn't implement the latest YAML specs, and all of it's new insecurities, which is a good thing. And it's much, much faster than the sax-like libyaml.
But since syck uses the ruby hashtable internally, I got stuck in the gem for a while. It fell out of their stdlib, and is not really maintained neither. PHP had the latest updates for it. And perl (me) extended it to be more recursion safe, and added more policies (what to do on duplicate keys: skip or overwrite).
So the ruby bindings are troublesome because of its GC, which with threading requires now7 a global vm instance. And using the ruby alloc/free pairs.
PHP, perl, python, Lua, IO, cocoa, all no problem. Just ruby, because of its too tight coupling. Looks I have to decouple it finally from ruby.
I don't think you understand his point. Ruby has a different syntax because it presents different/more language features than a very basic C-like language; it's inspired by Lisp/SmallTalk, after all. Lua doesn't but still decided to change its looks a lot, according to him.
I’m always surprised people pick Lua when Pawn exists. I think I’d even still choose it over MicroQuickJS
I read this comment, about to snap back with an anecdote how I as a 13 year old was able to learn Lua quite easily, and then I stopped myself because that wasn't productive, then pondered what antirez might think of this comment, and then I realized that antirez wrote it.
It sounds like you're trying to articulate why you don't like Lua, but it seems to just boil down to syntax and semantics unfamiliarity?
I see this argument a lot with Lua. People simply don't like its syntax because we live in a world where C style syntax is more common, and the departure from that seem unnecessary. So going "well actually, in 1992 when Lua was made, C style syntax was more unfamiliar" won't help, because in the current year, C syntax is more familiar.
The first language I learned was Lua, and because of that it seems to have a special place in my heart or something. The reason for this is because in around 2006, the sandbox game "Garry's Mod" was extended with scripting support and chose Lua for seemingly the same reasons as Redis.
The game's author famously didn't like Lua, its unfamiliarity, its syntax, etc. He even modified it to add C style comments and operators. His new sandbox game "s&box" is based on C#, which is the language closest to his heart I think.
The point I'm trying to make is just that Lua is familiar to me and not to you for seemingly no objective reason. Had Garry chosen a different language, I would likely have a different favorite language, and Lua would feel unfamiliar and strange to me.
In that case, my point about Garry not liking Lua despite choosing it for Garrysmod, for seemingly the same reason as antirez is very appropriate.
I haven't read antirez'/redis' opinions about Lua, so I'm just going off of his post.
In contrast I do know more about what Garry's opinion on Lua is as I've read his thoughts on it over many years. It ultimately boils down to what antirez said. He just doesn't like it, it's too unfamiliar for seemingly no intentional reason.
But Lua is very much an intentionally designed language, driven in cathedral-style development by a bunch of professors who seem to obsess about language design. Some people like it, some people don't, but over 15 years of talking about Lua to other developers, "I don't like the syntax" is ultimately the fundamental reason I hear from developers.
So my main point is that it just feels arbitrary. I'm confident the main reason I like Lua is because garry's mod chose to implement it. Had it been "MicroQuickJS", Lua would likely feel unfamiliar to me as well.
If I am remembering correctly, there was a moment where Garry was seriously considering using Squirrel instead of Lua. I think he experimented with JavaScript too.
I’m not sure it’s still the case but he modified Lua to be zero indexed and some other tweaks because they annoyed him so much, so it’s possible if you learned GMod Lua you learned Garry’s Lua.
Of course his heart has been with C# for many years now.
It wouldn't fix the issue of semantics, but "language skins"[1][2] are an underexplored area of programming language development.
People go through all this effort to separate parsing and lexing, but never exploit the ability to just plug in a different lexer that allows for e.g. "{" and "}" tokens instead of "then" and "end", or vice versa.
1. <https://hn.algolia.com/?type=comment&prefix=true&query=cxr%2...>
2. <https://old.reddit.com/r/Oberon/comments/1pcmw8n/is_this_sac...>
Not "never exploit"; Reason and BuckleScript are examples of different "language skins" for OCaml.
The problem with "skins" is that they create variety where people strive for uniformity to lower the cognitive load. OTOH transparent switching between skins (about as easy as changing the tab sizes) would alleviate that.
> OTOH transparent switching between skins (about as easy as changing the tab sizes) would alleviate that.
That's one of my hopes for the future of the industry: people will be able to just choose the code style and even syntax family (which you're calling skin) they prefer when editing code, and it will be saved in whatever is the "default" for the language (or even something like the Unison Language: store the AST directly which allows cool stuff like de-duplicating definitions and content-addressable code - an idea I first found out on the amazing talk by Joe Armstrong, "The mess we're in" [1]).
Rust, in particular, would perhaps benefit a lot given how a lot of people hate its syntax... but also Lua for people who just can't stand the Pascal-like syntax and really need their C-like braces to be happy.
Also consider translation to non-English languages, including different writing and syntax systems (e.g. Arabic or Japanese).
Some languages have tools for more or less straightforward skinning.
Clojure to Tamil: https://github.com/echeran/clj-thamil/blob/master/src/clj_th...
C++ to distorted Russian: https://sizeof.livejournal.com/23169.html
> transparent switching between skins (about as easy as changing the tab sizes)
One of my pet "not today but some day" project ideas. In my case, I wanted to give Python/Gdscript syntax to any & all the curly languages (a potential boon to all users of non-Anglo keyboard layouts), one by one, via VSCode extension that implements a virtual filesystem over the real one which translates back & forth the syntaxes during the load/edit/save cycle. Then the whole live LSP background running for the underlying real source files and resurfacing that in the same extension with line-number matchings etc.
Anyone, please steal this idea and run with it, I'm too short on time for it for now =)
VB.Net is mostly a reskin of C# with a few extras to smooth the transition from VB.
Lowering the barrier to create your own syntax seems like a bad thing though. C.f. perl.
Lua has been a wild success considering it was born in Brazil, and not some high wealth, network-effected country with all its consequent influential muscle (Ruby? Python? C? Rust? Prolog? Pascal? APL? Ocaml? Show me which one broke out that wasn't "born in the G7"). We should celebrate its plucky success which punches waaay above its adoption weight. It didn't blindly lockstep ALGOL citing "adooooption!!", but didn't indulge in revolution either, and so treads a humble path of cooperative independence of thought.
Come to think of it I don't think I can name a single mainstream language other than Lua that wasn't invented in the G7.
JavaScript in 2010 was a totally different beast, standartization-wise. Lots of sharp corners and blank spaces were still there.
So, even if an implementation like MicroQuickJS existed in 2010, it's unlikely that too many people would have chosen JS over Lua, given all the shortcomings that JavaScript had at the time.
While you're not wrong that JS has come a long way in that time, it's not the case that it was an extremely unusual choice at the time - Ryan Dahl chose it for node in 2009.
In 1994 at the second WWW conference we presented "An API to Mosaic". It was TCL embedded inside the (only![1]) browser at the time - Mosaic. The functionality available was substantially similar to what Javascript ended up providing. We used it in our products especially for integrating help and preferences - for example HTML text could be describing color settings, you could click on one, select a colour from the chooser and the page and setting in our products would immediately update. In another demo we were able to print multiple pages of content from the start page, and got a standing ovation! There is an alternate universe where TCL could have become the browser language.
For those not familiar with TCL, the C API is flavoured like main. Callbacks take a list of strings argv style and an argc count. TCL is stringly typed which sounds bad, but the data comes from strings in the HTML and script blocks, and the page HTML is also text, so it fits nicely and the C callbacks are easy to write.
[1] Mosaic Netscape 0.9 was released the week before
Yes, previously: https://news.ycombinator.com/item?id=35989909
The Redis test suite is still written in Tcl: https://news.ycombinator.com/item?id=9963162 (although more recently antirez said somewhere he wished he'd written it in C for speed)
I also strongly disliked luas syntax at first but now I feel like the meta tables and what not and pcall and all that stuff is kinda worth it. I like everything about Lua except some of the awkward syntax but I find it so much better then JS, but I haven't been a web dev in over a decade
I'm torn on this.
Initially I agreed, just because so many other languages do it that way.
But if you ignore that and clean slate it, IMO, 1 based makes more sense. I feel like 0 based mainly gained foothold because of C's bastardization of arrays vs pointers and associated tricks. But most other languages don't even support that.
You can only see :len(x)-1 so many times before you realize how ridiculous it is.
My hunch is that the same is true of Wikipedia's choice of Lua for template scripting, made back in 2012.
https://lists.wikimedia.org/hyperkitty/list/wikitech-l@lists...
I think criticizing JavaScript has become a way of signaling "I'm a good programmer." Yes, good programmers ten years ago had valid reasons to criticize it. But today, attacking the efforts of skilled engineers who have improved the language (given the constraints and without breaking half of the web) seems unfair. They’ve achieved a Herculean task compared to the Python dev team, which has broken backward compatibility so many times yet failed to create a consistent language, lacking a single right way to do many things.
> But today, attacking the efforts of skilled engineers who have improved the language (given the constraints and without breaking half of the web) seems unfair.
I was criticising a thing not a person.
Also your comment implies it was ok to be critical of a language 10 years ago but not ok today because a few more language designers might get offended. Which is a weird argument to make.
> it feels like it departs from what people know without good reasons.
Lua is a pretty old language. In 1993 the world had not really settled on C style syntax. Compared to Perl or Tcl, Lua's syntax seems rather conventional.
Some design decisions might be a bit unusual, but overall the language feels very consistent and predictable. JS is a mess in comparison.
> because it departs from a more Algol-like syntax
Huh? Lua's syntax is actually very Algol-like since it uses keywords to delimit blocks (e.g. if ... then ... end)
I known for very long time that c (and co) inherited the syntax from algol.
But only after long time I tried to check what Algol actually looked like. To my surprise, Algol does not look anything like C to me.
I would be quite interested in the expanded version of “C has inherited syntax from Algol”
Edit: apparently the inheritance from Algol is a formula: lexical scoping + value returning functions (expression based) - parenthesitis. Only last item is about visual part of the syntax.
Algol alternatives were: cobol, fortan, lisp, apl.
The use of curly braces for delimiting blocks of code actually comes from BCPL.
Of course, C also inherited syntax from Algol, but so did most languages.
> consistent and predictable
That's what matters to me, not how similar Lua is to other languages, but that the language is well-designed in its own system of rules and conventions. It makes sense, every part of it contributes to a harmonious whole. JavaScript on the other hand.
When speaking of Algol or C-style syntax, it makes me imagine a "Common C" syntax, like taking the best, or the least common denominator, of all C-like languages. A minimal subset that fits in your head, instead of what modern C is turning out to be, not to mention C++ or Rust.
Is modern C really much more complicated than old C? C++ is a mess of course.
Not to mention the 1-based indexing sin. JavaScript has a lot of WTFs but they got that right at least.
Pascal. Modula-2. BASIC. Hell, Logo.
Lately, yes, Julia and R.
Lots of systems I grew up with were 1-indexed and there's nothing wrong with it. In the context of history, C is the anomaly.
I learned the Wirth languages first (and then later did a lot of programming in MOO, a prototype OO 1-indexed scripting language). Because of that early experience I still slip up and make off by 1 errors occasionally w/ 0 indexed languages.
(Actually both Modula-2 and Ada aren't strictly 1 indexed since you can redefine the indexing range.)
It's funny how orthodoxies grow.
Does it count as 0-indexing when your 0 is a floating point number?
There's nothing wrong with 1-based indexing. The only reason it seems wrong to you is because you're familiar with 0-based, not because it's inherently worse.
This engine restricts JS in all of the ways I wished I could restrict the language back when I was working on JSC.
You can’t restrict JS that way on the web because of compatibility. But I totally buy that restricting it this way for embedded systems will result in something that sparks joy
He already has a JS engine which doesn’t make these restrictions
Yeah QuickJS is great.
I bet MQJS will also be very popular. Quite impressive that bro is going to have two JS engines to brag about in addition to a lot of other very useful things!
> Quite impressive...
Yes, quite! Monsieur Bellard is a legend of computer programming. It would be hard to think of another programmer whose body of public work is more impressive than FB.
Unfortunate that he doesn't seem to write publicly about how he thinks about software. I've never seen him as a guest on any podcast either.
I have long wondered who the "Charlie Gordon" who seems to collaborate with him on everything is. Googling the name brings up a young ballet dancer from England, but I doubt that's the person in question.
If anyone wants to try out MicroQuickJS in a browser here's a simple playground interface for executing a WebAssembly compiled version of it: https://tools.simonwillison.net/microquickjs
It's a variant of my QuickJS playground here: https://tools.simonwillison.net/quickjs
The QuickJS page loads 2.28 MB (675 KB transferred). The MicroQuickJS one loads 303 KB (120 KB transferred).
Looks like those sizes could be improved significantly, as the builds include names etc. I would suggest linking with
emcc -O3
(and maybe even adding --closure 1 )
edit: actually the QuickJS playground looks already optimized - just the MicroQuickJS one could be improved.
Nice. Got it down from 229KB to 148KB! Thanks for the tips.
https://github.com/simonw/research/pull/5
Thats now live on https://tools.simonwillison.net/microquickjs
Thanks for sharing! The link to the PR looks like a wrong paste. I found https://github.com/simonw/tools/pull/181 which seems to be what was intended to be shared instead.
I was interested to try Date.now() since this is mentioned as being the only part of the Date implementation that is supported but was surprised to find it always returns 0 for your microquickjs version - your quickjs variant appears to return the current unix time.
The most important thing about any new JS runtime in 2025, how do I use it from JS? /s
Clarification added later: One of my key interests at the moment is finding ways to run untrusted code from users (or generated by LLMs) in a robust sandbox from a Python application. MicroQuickJS looked like a very strong contender on that front, so I fired up Claude Code to try that out and build some prototypes.
I had Claude Code for web figure out how to run this in a bunch of different ways this morning - I have working prototypes of calling it as a Python FFI library (via ctypes), as a Python compiled module and compiled to WebAssembly and called from Deno and Node.js and Pyodide and Wasmtime https://github.com/simonw/research/blob/main/mquickjs-sandbo...
PR and prompt I used here: https://github.com/simonw/research/pull/50 - using this pattern: https://simonwillison.net/2025/Nov/6/async-code-research/
Down to -4. Is this generic LLM-dislike, or a reaction to perceived over-self-promotion, or something else?
No matter how much you hate LLM stuff I think it's useful to know that there's a working proof of concept of this library compiled to WASM and working as a Python library.
I didn't plan to share this on HN but then MicroQuickJS showed up on the homepage so I figured people might find it useful.
(If I hadn't disclosed I'd used Claude for this I imagine I wouldn't have had any down-votes here.)
I think many subscribe to this philosophy: https://distantprovince.by/posts/its-rude-to-show-ai-output-...
Your github research/ links are an interesting case of this. On one hand, late AI adopters may appreciate your example prompts and outputs. But it feels like trivially reproducible noise to expert LLM users, especially if they are unaware of your reputation for substantive work.
The HN AI pushback then drowns out your true message in favor of squashing perceived AI fluff.
Yeah, I agree that it's rude to show AI output to people... in most cases (and 100% if you don't disclose it.)
My simonw/research GitHub repo is deliberately separate from everything else I do because it's entirely AI-generated. I wrote about that here: https://simonwillison.net/2025/Nov/6/async-code-research/#th...
This particular case is a very solid use-case for that approach though. There are a ton of important questions to answer: can it run in WebAssembly? What's the difference to regular JavaScript? Is it safe to use as a sandbox against attacks like the regex thing?
Those questions can be answered by having Claude Code crunch along, produce and execute a couple of dozen files of code and report back on the results.
I think the knee-jerk reaction pushing back against this is understandable. I'd encourage people not to miss out on the substance.
> I am talking about not only job shortages but also general humbling of the bloated egos.
I'm gonna give you the benefit for the doubt here. Most of us do not dislike genAI because we were fired or "humbled". Most of us dislike it because a) the terrible environmental impacts, b) the terrible economic impacts, and c) the general non-production-readiness of results once you get past common, well-solved problems
Your stated understanding comes off a little bit like "they just don't like it because they're jealous".
I'm constanly encountering this "bloated ego" argument every time the narrative is being steered away to prevent monetary losses for AI companies.
Especially so when it concerns AI theft of human music and visual art.
"Those pompous artists, who do they think they are? We'll rob them of their egos".
The problem is that these ego-accusations don't quite come from egoless entities.
It is not about artists per ce, it is about manipulative entities. For any manipulation to succeed, one has to create a fog, disorientation, muddy waters.
AI brings clarity. This results in a lot of pain for those who tried to hijack the game in one way or another.
From the psychological point of view, AI is a mirror of one's personality. Depending on who you are, you see different reflections: someone sees a threat, others see the enlightenment.
It is because you keep over promoting AI almost every day of the week in the HN comments.
In this particular case AI has nothing to do with Fabrice Bellard.
We can have something different on HN like what Fabrice Bellard is up to.
You can continue AI posting as normal in the coming days.
Forget about the AI bit. Do you think it's interesting that MicroQuickJS can be used from Python via FFI or as a compiled module, and can also be compiled to WebAssembly and called from Node.js and Deno and from Pyodide running in a browser?
... and that it provides a useful sandbox in that you can robustly limit both the memory and time allowed, including limiting expensive regular expression evaluation?
I included the AI bit because it would have been dishonest not to disclose how I used AI to figure this all out.
I appreciated it. I have no idea why someone would downvote it other than spite
On the contrary, it's pretty possible that LLMs themselves will be perceied as a quaint historic artefact and join the ranks of mechanical turks, zeppelins, segways, google glasses and blockchains.
I think the people interacting with this post are just more likely to appreciate the raw craftsmanship and talent of an individual like Bellard, and coincidentally might be more critical of the machinery that in their perception devalues it. I count myself among them, but didn’t downvote, as I generally think your content is of high quality.
Your tireless experimenting (and especially documenting) is valuable and I love to see all of it. The avant garde nature of your recent work will draw the occasional flurry of disdain from more jaded types, but I doubt many HN regulars would think you had anything but good intentions! Guess I am basically just saying.. keep it up.
I didn't downvote you. You're one of "the AI guys" to me on HN. The content of your post is fine, too, but, even if it was sketch, I'd've given you the benefit of the doubt.
I downvoted because I'm tired of people regurgitating how they've done this or that with whatever LLM of the week on seemingly every technical post.
If you care that much, write a blog post and post that, we don't need low effort LLM show and tell all day everyday.
Here you go: https://simonwillison.net/2025/Dec/23/microquickjs/
Look at how others implement quickjs and restrict its runtime for sensitive workloads [1], should be similar.
But there are other ways, e.g. run the logic isolated within gvisor/firecracker/kata.
[1] github.com/microsoft/CCF under src/js/core
What is the purpose of compiling this to web assembly? What web assembly runtimes are there where there is not already an easily accessible (substantially faster) js execution environment? I know wasmtime exists and is not tied to a js execution engine like basically every other web assembly implementation, but the uses of wasmtime are not restricted from dependencies like v8 or jsc. Usually web assembly is used for providing sandboxing something a js execution environment is already designed to provide, and is only used when the code that requires sandboxing is native code not javascript. It sounds like a good way to waste a lot of performance for some additional sandboxing, but I can't imagine why you would ever design a system that way if you could choose a different (already available and higher performance) sandbox.
I want to build features - both client- and server-side - where users can provide JavaScript code that I then execute safely.
Just having a WebAssembly engine available isn't enough for this - something has to take that user-provided string of JavaScript and execute it within a safe sandbox.
Generally that means you need a JavaScript interpreter that has itself been compiled to WebAssembly. I've experimented with QuickJS itself for that in the past - demo here: https://tools.simonwillison.net/quickjs - but MicroQuickJS may be interesting as a smaller alternative.
If there's a better option than that I'd love to hear about it!
GraalVM supports running javascript in a sandbox with a bunch of convenient options for running untrusted code.
This is generally the purpose of JavaScript execution environments like v8 or jsc (or quickjs although I understand not trusting that as a sandbox to the same degree). They are specifically intended for executing untrusted scripts (eg web browsers). Web assembly’s sandboxing comes from js sandboxing, since it was originally a feature of the same programs for the same reasons. Wrapping one sandbox in another is what I’m surprised by.
As I noted in another comment Figma has used QuickJS to run JS inside Wasm ever since a security vulnerability was discovered in their previous implementation.
In a browser environment it's much easier to sandbox Wasm successfully than to sandbox JS.
That’s very interesting! Have they documented the reasoning for that approach? I would have expected iframes to be both simpler and faster sandboxing mechanism especially in compute bound cases. Maybe the communication overhead is too high in their workload?
EDIT: found this from your other comment: https://www.figma.com/blog/an-update-on-plugin-security/ they do not address any alternatives considered.
Well, as Jeff Atwood famously said [0], "any application that can be written in JavaScript, will eventually be written in JavaScript". I guess that applies to embedded systems too
Well, wasn't Fabrice Bellard the guy who built a virtual machine with JS so that you could run Linux within the browser?
https://bellard.org/jslinux/vm.html?cpu=riscv64&url=fedora33...
Not to detract from his status as a legend, but I think the kind of person that singlehandedly makes one of these projects is exactly the kind of person that would make the others.
I forgot about FFmpeg (thanks for the reminder), but my first thought was "yup that makes perfect sense".
I know it's not true, but it would be funny if Bellard had access to AI for 15 years (time-traveler, independent invention, classified researcher) and that was the cause of his superhuman producitvity.
AI will let 10,000 Bellards bloom - or more.
And FFMPEG, the standard codec suite for Unix today. And Qemu, the core of KVM. Plus TCC, a great small compiler compared to C/Clang altough cparser has better C99 coverage. Oh, and some DVB transmitter reusing the MHZ radiation from a computer screen by tweaking the Vidtune values from X. It's similar to what Tempest for Eliza does.
As a fellow (but way junior) JavaScript engine developer I'm really happy to see the stricter mode, and especially Arrays being dense while Objects don't treat indexed properties specially at all: it is my opinion that this is where we should drive JavaScript towards, slow and careful though it may be.
In my engine Arrays are always dense from a memory perspective and Objects don't special case indexes, so we're on the same page in that sense. I haven't gotten around to creating the "no holes" version of Array semantics yet, and now that we have an existing version of it I believe I'll fully copy out Bellard's semantics: I personally mildly disagree with throwing errors on over-indexing since it doesn't align with TypedArrays, but I'd rather copy an existing semantic than make a nearly identical but slightly different semantic of my own.
It's unfortunate that he uploaded this without notable commit history, it would be interesting to see how long it takes a programmer of his caliber to bring up a project like this.
That said, judging by the license file this was based on QuickJS anyway, making it a moot comparison.
I wonder if this could become the most lightweight way for yt-dlp to solve YouTube Javascript challenges.
https://github.com/yt-dlp/yt-dlp/wiki/EJS
(Note that Bellard's QuickJS is already a supported option.)
That's a great idea, but if they did, then YouTube could retaliate by specifically using features that MicroQuickJS does not support.
Interesting. I wonder if mqjs would make it feasible to massively parallelize JavaScript on the GPU. I’m looking for a way to run thousands of simultaneous JS interpreters, each with an isolated heap and some shared memory. There are some research projects [1, 2] in this direction, but they are fairly experimental.
I'm not an embedded systems guy (besides using esp32 boards) so this might be a dumb question but does something like this open up the possibility of programming an esp32/arduino board with Javascript, like Micro/Circuit Python?
There are already libraries/frameworks that have supported this:
* espruino (https://www.espruino.com/)
* elk (https://github.com/cesanta/elk)
* DeviceScript (Microsoft Research's now defunct effort, https://github.com/microsoft/devicescript)
That's been possible with Moddable/Kinoma's XS engine, which is standards compliant with ES6 and beyond.
<https://www.moddable.com/faq#comparison>
If you take a look at the MicroQuickJS README, you can see that it's not a full implementation of even ES5, and it's incompatible in several ways.
Just being able to run JS also isn't going to automatically give you any bindings for the environment.
Sort of related: About ten years ago there was a device called the Tessel by Technical Machine which you programmed with Javascript, npm, the whole nine yards. It was pretty clever - the javascript got transpiled to Lua VM bytecode and ran in the Lua VM on the device (a Cortex M3 I believe). I recently had Claude rewrite their old Node 0.8 CLI tools in Rust because I wasn't inclined to do the javascript archeology needed to get the old tools up and running. Of course then I put the Tessel back in its drawer, but fun nonetheless.
Some other guy tried it as well after you, also no luck.
One strategy is to wait for US to wake up, then post, during their morning.
Other strategy is to post the same thing periodically until there is response.
When reading through the projects list of JS restrictions for "stricter" mode, I was expecting to see that it would limit many different JS concepts. But in fact none of the things which are impossible in this subset are things I would do in the course of normal programming anyway. I think all of the JS code I've written over the past few years would work out of the box here.
I was surprised by this one that only showed up lower in the document:
- Date: only Date.now() is supported. [0]
I certainly understand not shipping the js date library especially in an embedded environment both for code-size, and practicality reasons (it's not a great date library), but that would be an issue in many projects (even if you don't use it, libraries yo use almost certainly do.
https://github.com/bellard/mquickjs/blob/main/README.md#:~:t...
> String functions: codePointAt, replaceAll, trimStart, trimEnd.
As I read it, these are supported es5 extensions, not missing as part of stricter mode.
> It compiles and runs Javascript programs with as low as 10 kB of RAM.
Just in time for RAM to become super expensive. How easy would it be to shove this into Chromium and Electron?
This makes me wonder, is there analysis of the syntax and if so can't it pick the lightest implementation? I see how light dillo is on the same page as chrome and I don't know why a web browser of the caliber of chrome does so much worse than a browser worked by a handful of people.
[delayed]