Comment by whyandgrowth
Comment by whyandgrowth 20 hours ago
This is very interesting, but I have 3 questions:
1. Why exactly n = 2 minimizes π. The article shows this graphically, but there is no formal proof (although the Adler & Tanton paper is mentioned). It would be interesting to understand why this is the case mathematically.
2. How to calculate π for n-metrics numerically. The general idea of "divide the circle into segments and calculate the length by the metric" is explained, but the exact algorithm or formulas are not shown.
3. What happens when n → 0. It mentions that "the concept of distance breaks down," but it does not explain exactly how and why this is so.
I think lcantuf has looked at the first two and decided that the answer is too complex for a post like this. He linked to the article.
The third one we can reason about: For all cases where x and y aren't 0, |x|^n goes to 1 as n goes to 0, so (|x|^n + |y|^n) goes to 2 , and 1/n goes to infinity, so lin n->0 (|x|^n + |y|^n)^(1/n) goes to infinity. If x and y are 0 it's 0, if x xor y are 0 it's 1.
To phrase this in a mathematically imprecise way, if all distances are either 0, 1, or infinite the concept of distance no longer represents how close things are together.