EU court rules nuclear energy is clean energy
(weplanet.org)722 points by mpweiher 12 hours ago
722 points by mpweiher 12 hours ago
I’m totally fine with nuclear honestly, but I feel like I don’t understand something. No one seems to be able to give me a straight answer with proper facts that explain why we couldn’t just make a whole load more renewable energy generators instead. Sure, it might cost more, but in theory any amount of power a nuclear plant would generate could also be achieved with large amounts of renewables no?
You totally can do it with some combination of overbuilding, storage and increased interconnection. It just starts to get expensive the higher the portion of your generation you want to supply with renewables. There's a good Construction Physics article[0] about this (though it simplifies by only looking at solar, batteries and natural gas plants and mostly does not distinguish between peaker and more baseload oriented combined cycle plants).
Personally, while I'm not opposed to nuclear, I'm pretty bearish on it. Most places are seeing nuclear get more expensive and not less. Meanwhile solar and batteries are getting cheaper. There's also the issue that nuclear reactors are generally most economical when operating with very high load factors (i.e. baseload generation) because they have high capital costs, but low fuel costs. Renewables make the net-demand curve (demand - renewable generation) very lumpy which generally favors dispatchable (peaker plants, batteries, etc.) generation over baseload.
Now a lot of what makes nuclear expensive (especially in the US) is some combination of regulatory posture and lack of experience (we build these very infrequently). We will also eventually hit a limit on how cheap solar and batteries can get. So it's definitely possible current trends will not hold, but current trends are not favorable. Currently the cheapest way to add incremental zero-carbon energy is solar + batteries. By the time you deploy enough that nuclear starts getting competitive on an LCOE basis, solar and batteries will probably have gotten cheaper and nuclear might have gotten more expensive.
[0] https://www.construction-physics.com/p/can-we-afford-large-s...
> Renewables make the net-demand curve (demand - renewable generation) very lumpy which generally favors dispatchable (peaker plants, batteries, etc.) generation over baseload.
Even without renewables in the equation, the demand side of the curve is already extremely lumpy. If you're only affordable when you're operating near 100% of the time (i.e. "baseload") you simply can't make up the majority of power generation. Batteries are poised to change this - but at that point you've got to be cheaper than the intermittent power sources.
If the goal is 100% carbon-free energy, then we simply can't let economics get in the way. Otherwise we will always be stuck building some natural gas peaker plants.
And one option is to mass produce nuclear power plants, get prices down even further via economics of scale and then run them uneconomically.
Uneconomically doesn't mean "at a loss", just that you aren't making as much profit as you could optimally. With enough economics of scale, we can probably still run these nuclear plants at a profit, maybe even cheaper than natural gas peakers. But it doesn't matter, the goal is saving the planet, not profit.
It's not the only option, you can also build massive amounts of wind/solar/tidal and pair them with massive amounts of battery storage.
The third option is to build way more hydro power plants. Hydro tends to get overlooked as a form of green energy, because while it might be 100% renewable, you do have to "modify" a local ecosystem to construct a new dam. But hydro has the massive advantage that it can work as both baseload and demand load, so they can pair nicely with wind/solar/tidal.
I'm not even talking about pumped hydro (though, that's a fourth option to consider). Regular hydro can work as energy storage by simply turning the turbines off at letting the lakes fill up whenever there is sufficient power from your other sources.
As a supporter of nuclear, I think most nuclear supporters will be happy if we achieve carbon neutrality by any means.
But as other commenters pointed out, renewables are not achieving that in most places. According to Google, a staunchly anti-nuclear Germany has 6.95 tons per capita at 2023. France achieved that at 1986 (!!) and is now at 4.14.
It's really a question that should be directed at renewables: "If renewables are so cheap and fast to deploy, how come 39 years after Chernobyl, Germany still cannot get below France in CO2 emission?"
> It's really a question that should be directed at renewables: "If renewables are so cheap and fast to deploy, how come 39 years after Chernobyl, Germany still cannot get below France in CO2 emission?"
Because renewables and storage have only been produced at the scale and price required to achieve this for the last 5 years. [1]
The following article "Solar electricity every hour of every day is here and it changes everything"[2] is an interesting demonstration of how solar + batteries is pushing other generation sources to the periphery in most of the world.
Edit: Here is some more data for Brazil and the UK showing a large increase in solar over the last 5 years [3][4]
1. https://ember-energy.org/latest-insights/solar-power-continu...
2. https://ember-energy.org/latest-insights/solar-electricity-e...
3. https://ember-energy.org/latest-insights/wind-and-solar-gene...
4.https://ember-energy.org/latest-insights/a-record-year-for-b...
just looked at 2, using their own numbers, and it says 97% to 24/365, in a sunny area (Las Vegas), which is like an outage 43 minutes out of every day (24 * 0.03 * 60).
That's not what many would consider as 24/365, and certainly not "every hour of every day".
Because fast to deploy in theory fights quickly with permitting systems and NIMBYism. You need more permits, because a typical solar or wind farm doesn't come close to a nuclear plan's output, so the per-project bureaucracy multiplies. By needing more places, you also have more groups opposing projects for typical NIMBY reasons. You need battery facilities too, and more updates to the grid to deal with having less inertia, and the updates cost money, and the battery facilities themselves face more NIMBYism: Minimum distances to places where people live and such. So when you put it all together, slow bureaucracies just move at glacial paces, and the equipment you would have bought when you sent out the permit is already different than what you want to use when the permitting is approved.
Then we have the tariffs, as Europe puts tariffs on Chinese equipment that change the price quite a bit.
A country that took this very seriously and decided to put renewables as a top priority could go quite fast. But if there's anything one should learn about the last few decades is that modern democracies care too much about vested interest and NIMBY complaints to actually get projects like this done. Just look at charts showing power waiting to go online in most countries: You'll find very long lines, even after dealing with the rest of the the bureaucratic gauntlet.
The issue is that renewable tends to be intermittent and long-term storage is an open problem. You can do find in a day with battery but you can’t really produce a lot in the summer and use in winter.
It means you either need an alternative when production is too low such as coal or gas-fired power plants or a lot of capacity sufficiently stretched out than they are not stopped at the same time. Managing such a large grid with huge swings in capacity and making it resilient is a massive challenge. That’s why you end up with Germany building 70-ish new gas-fired power plants next to their alleged push towards renewable.
It’s probably doable but when you look at it from this angle nuclear starts to look good as an alternative.
> You can do find in a day with battery but you can’t really produce a lot in the summer and use in winter.
Batteries aren't the only storage. The better options in my opinion are the places where you can use the landscape to your advantage. Pump a lake full when there's too much power and let it drain when there's too little.
Also in a connected grid setup, the sun always shines somewhere though that does come with potentially huge transmission losses from distance
You need a reliable source for energy. Pumped storage is not. They are mostly good for dealing with the fluctuations of energy supply and demand. It crucially requires water to operate. You can't do much when there's a drought. Also, did some googling. The world’s largest pumped‑hydro storage plant (Fengning, China) stores nearly 40 GWh, delivering 3.6 GW for about 10.8 hours when full. Thats not even a day.
There are really three options for reliable baseload: coal, gas, nuclear. Pick your poison.
> The better options in my opinion are the places where you can use the landscape to your advantage.
We already do that. France notably has a lot of hydropower and they pump water up when they don’t want to shutdown a nuclear unit.
The issue is that there is very little places where you could build new dams in Europe and water shortage is becoming a regular occurrence.
> Batteries aren't the only storage. The better options in my opinion are the places where you can use the landscape to your advantage. Pump a lake full when there's too much power and let it drain when there's too little.
It's also the oldest storage tech and I doubt there's a single place in Europe available to build more.
> Also in a connected grid setup, the sun always shines somewhere though that does come with potentially huge transmission losses from distance
The whole EU is in winter weather together.
One thing to bear in mind about Europe is that to go carbon neutral you need to be able to deal with winters.
First of all they are darker than the US due to latitude, so solar during winter is basically a no go in half of the places where people actually live. I have rooftop solar and November - February it might as well not exist. One January it generated 20kWh for the whole month vs a peak of 70kWh per day in the summer. Wind is an option, but NIMBYism makes that hard as Europe doesn't have as much empty space as the US.
The other thing is heating: in Europe around 64% of residential energy use goes to space heating Vs 42% in the US. And the majority of that comes from gas. So to go carbon neutral, you actually need to greatly increase electricity demand. This is why Europe is pushing for new homes to be really well insulated.
I don't think you should dismiss opposition to wind as mere NIMBYism
Windmills can be super loud and disruptive if they are built near you
Take a look around online and you can find people posting videos along the lines of "A windmill was built near my house, now every evening it's like a strobe light in here as the sun sets behind the windmill"
I wouldn't want to live anywhere near one myself
The answer to this is just "intermittent" : the higher the share of renewables, the higher the share that you have to make up for when you're at night without wind. This can be done through batteries, water storage, or interconnection, but that's the real cost of renewables.
> Sure, it might cost more
I think this is more than good enough to be the "straight answer" you're looking for all on its own (& it's definitely not a case of "it might" - it definitely will).
However, on top of the cost, there's three additional reasons:
2. It will take longer
3. It will need to be geographically distributed to an extent that will incur a significantly broader variety of local logistical red tape & hurdles
4. One of the largest components that will cost more is grid balancing energy storage, which is not only a cost & logistical difficulty, but also an ongoing research area needing significant r&d investment as well.
Given all those comparators, it's a testament to the taboo that's been built up around nuclear that we have in fact been pursuing your "all renewable" suggestion anyway.
> It will take longer
Longer than nuclear? Where did you get that idea from?
Anyway, about #4, nuclear can't economically work in a grid with renewables without batteries. With renewables, you can always temporarily switch to a more expensive generator when they go out, but anything intermittent that competes with nuclear will bankrupt it.
> economically
When we're talking about societal public investment - even investment in the private sector - capital cost is a much more constrained consideration than anything related to abstract market "competitiveness". The latter does not influence the former in real terms (only in argumentative policy terms, which are unfortunately more impactful than they should be).
> Longer than nuclear? Where did you get that idea from?
Longer than nuclear to do what? I was replying to the above commenter who said the following:
> in theory any amount of power a nuclear plant would generate could also be achieved with large amounts of renewables
TTL for individual nuclear is obviously always much longer than for renewables but time to any arbitrary large generation goal is almost certainly shorter for nuclear (barring taboo).
You're wasting your energy on that user, I suspect.
> No one seems to be able to give me a straight answer with proper facts
...is commonly a rhetorical pattern meaning "I've predetermined my conclusion, but I want to save face by appearing rational and casting those I disagree with as biased or incompetent in one fell swoop."
It's the "Aren't there any REAL men anymore?" of contentious topics.
There is just no good reason to build nuclear in a world with renewables.
Especially if you consider that most nations cannot produce fuel rods by themselves.
And if you calculate in the risk like “get me a insurance that covers leaks and melt downs” and finance somehow the disassembly of a nuclear plant, nuclear is one of the most costly ways you can get energy.
Plus it is a huge nice target in war times.
There are so so many benefits to decentralized renewables that you intuition is absolutely correct.
If Germany invested all their renewable money into nuclear, they would be carbon-neutral today. Not by 2050 but today.
Instead the CO2 per capita in Germany is 2x the one in France. And France had built their reactors in the 70s for a modest price.
The "whole load more renewable energy" idea is peak wishful thinking and it's incredible people still buy it today.
No they couldn't have. Germany has spent $700B on renewable energy and need 250GW of power. Not even China could have built 250GW of nuclear power for $700B although they could come close. Germany likely would have needed to spend $5T.
Much of that $700B was spent in the 2000's and 2010's when renewable was more expensive than nuclear. But renewables are far cheaper than nuclear in the 2020's.
> Germany has spent $700B on renewable energy and need 250GW of power.
Germany has just over 250GW of installed capacity. [0] indicates peak power is 75GW. Replicating the Olkiluoto EPR build for 75GW of capacity would have cost perhaps 500B EUR.
[1] speculates about what would have happened if Germany had retained its nuclear power stations and performed a fleet build-out.
[0] https://www.cleanenergywire.org/news/german-industry-has-lar...
[1] https://www.tandfonline.com/doi/full/10.1080/14786451.2024.2...
We've banned this account for repeatedly breaking the site guidelines and ignoring our requests to stop.
If you don't want to be banned, you're welcome to email hn@ycombinator.com and give us reason to believe that you'll follow the rules in the future. They're here: https://news.ycombinator.com/newsguidelines.html.
Nuclear has serious advantages over renewables when you consider the physical constraints: to match a large nuclear plant solely with wind or solar, you’d need far more land, material, and backup or storage to deal with intermittency. Renewable sources can’t reliably deliver the same baseload without huge infrastructure and/or major reductions in energy demand. The trade-offs make nuclear almost unavoidable if we want to decarbonize quickly while keeping stable power supply.
Even with that, renewables are cheaper.
One often hears the pearl clutching about land area, but even in Europe the cost of land for renewables would be quite affordable. Building very expensive nuclear power plants to save on relatively cheap land would be penny wise, pound foolish, an optimization of the wrong metric.
Who the actually cares about cheaper I want better and more reliable
Can we please stop optimizing everything into low quality low reliability garbage for the sake of being cheaper?
> in theory any amount of power a nuclear plant would generate could also be achieved with large amounts of renewables no?
You're exactly right, in theory, in practice it's impossible without some significant amount of energy storage, which we don't really have.
I once did this calculation for fun: in Italy, starting from the current energy mix and replacing fossils with more solar while meeting the demand in winter would require covering with panels an area equal to the region of Abruzzo (that's like 5% of Italy's total surface).
There are a few things:
1. The electrical system was built for big power plants distributing the electricity to households. If you want to generate electricity a bit everywhere, you need to adapt the infrastructure. That's costly and it hasn't really been done at scale (whereas with nuclear plants it has).
2. With nuclear, you have great control over how much you produce. With renewables, you generally don't: you have electricity when there is wind or when there is sun. Batteries are not a solved problem at scale.
3. Renewable is cheap, but it depends on globalisation, which in turn depends on the abundance of fuel fossils. With nuclear, it's easier to have fewer dependencies. Which proportion of solar panels come from China?
4. Nuclear energy is very dense. Estimate how many solar panels you need to produce as much as a big nuclear plant, even without factoring in the batteries and the weather.
ignoring the fact that we live in the real world where money isn't infinite: nuclear provides stable base power generation, and it does it without taking up a lot of space.
Renewables produce power intermittently, and require storage to match demand. Storage either requires non-renewable resources like lithium, or else large amounts of land. in theory yes, any amount of power could be produced by renewables, but in practice renewables require other non-infinite resources to turn the power they generate into actual usable electricity coming out of your wall socket.
Yes? Any sort of system that generates power... can generate lots of power if there's more of that system.
What I find odd is that it has to be an all-or-nothing approach. Maybe sunny areas can do more with solar, great! But that won't work everywhere, and probably isn't a complete replacement anywhere. Other places that are cloudy, it might be better to go nuclear. Or even gas.
The regulations and the subsidies ought to be removed though, let the market decide. Solar or Nuclear will win if it's better, and that might be a per-area contest.
It would actually cost a lot less to use renewables and storage than a bunch of nuclear.
For a completely decarbinized grid, there are two paths: 1) 100% renewables plus storage, or 2) ~90% renewable plus storage, and 10% nuclear/advanced geothermal.
There's lots of debate about which one would be cheapest. But the true answer depends on how the cost curve of technologies develops over the coming 20 years. (Personally, I think 100% renewables will win because projections of all experts severely overestimate storage and renewables costs, while simultaneously severely underestimating the costs of nuclear. Renewables and storage are always over delivering, while nuclear always under delivers. So I think that trend will continue...)
You won't hear much about this in the popular media though, because they are too afraid of offending conservatives with politically incorrect facts. Sites like Ars Technica cover it though:
https://insideclimatenews.org/news/22092022/inside-clean-ene...
> Renewables and storage are always over delivering, while nuclear always under delivers
Well no, storage would need another 100x improvement for being usable in a 100% renewable scenario in any country you have any sort of winter.
Say what you want on nuclear but we have example of countries which managed it successfully, for renewables, we still haven't.
(just based on a little googling, don't shoot me if I'm wrong)
1 nuclear plant: 8 billion kilowatt hours/year
1 avg. wind turbine: 6 million kwh/yr, so 1300 turbines to match one nuke. It's obviously silly to bring up the Simpsons, but picturing 1300 turbines surrounding Springfield would be a funny visual gag.
Difficult to get numbers for solar plants because they vary wildly in size, but they seem to be commonly measured in tens of thousands, so napkin math suggest ~800,000 solar plants to match one nuclear plant.
Solar is awesome for reinforcing the grid and consumers; wind is neat but those turbines are only good for like twenty years. Nothing beats a nuke.
Meanwhile Iowa has more than 6000 wind turbines and is building 2-3 more every single day. You can find places in Iowa where there are wind turbines evenly spaced in all direction much farther than the eye can see. You wouldn't see 1300 turbines around Springfield because they don't put them close enough together to see that many. Most of those turbines are built by "German" companies, though the factory is local.
Get building Germany. Wind turbines are easy to scale.
This turns out not to be the case, and all these supposedly "externalized" costs are actually included in the price of electricity produced by nuclear reactors.
For example in Switzerland, all of that still allows full production costs of 4,34 Rappen (with a profit).
Can’t speak to other localities, but in the US, every additional project multiplies headaches with red tape, bureaucracy, cronyism, ideologically opposed politicians, sham environmental groups puppeted by incumbents, nearby residents taking issue with the project for whatever reason, etc. getting one project off the ground and landed safely is a monumental effort, let alone multiple.
I'm a nuclear supporter. I think we might be able to satisfy our energy needs with renewables. I am not entirely sure, because I'm not in the field. But, if it's true that renewables are so much cheaper, then self-interested individuals will invest in them. There is no need to be anti-nuclear.
People like me, who are pro-nuclear, do it because they believe that nuclear technology, like all technologies, could become much cheaper. Elon Musk was saying about rockets that in the end, with enough learning, the cost of building a rocket is only limited from below by the cost of the raw materials, so he though there is room to make rockets cheaper by a factor of 10 or 100. I think nuclear technology is the same; we can make it cheaper by a factor of 10 or 100. After all, we did that with solar and wind, didn't we?
We need to drive down the costs of implementing nuclear energy. Most of it are fake costs due to regulation. I understand that regulation is needed but we also need nuclear energy, we have to find a streamlined way to get more plants up and running as soon as possible. I think they should all be government projects so that private companies can't complain that they're losing money and keep have to ratchet up the prices, like PG&E in California. My rates have doubled in a few years to over $0.40/kWh and up over $0.50/kWh after I go up a tier depending on usage.
> Most of it are fake costs due to regulation.
It’s really not, nuclear inherently requires extreme costs to operate. Compare costs vs coal which isn’t cost competitive these days. Nuclear inherently need a lot more effort refining fuel as you can’t just dig a shovel full of ore and burn it. Even after refining you can’t just dump fuel in, you need fuel assemblies. Nuclear must have a more complicated boiler setup with an extra coolant loop. You need shielding and equipment to move spent fuel and a spent fuel cooling pond. Insurance isn’t cheap when mistakes can cost hundreds of billions. Decommissioning could be a little cheaper with laxer standards, but it’s never going to be cheap. Etc etc.
Worse, all those capital costs mean you’re selling most of your output 24/7 at generally low wholesale spot prices unlike hydro, natural gas, or battery backed solar which can benefit from peak pricing.
That’s not regulations that’s just inherent requirements for the underlying technology. People talk about small modular reactors, but small modular reactors are only making heat they don’t actually drive costs down meaningfully. Similarly the vast majority of regulations come from lessons learned so yea they spend a lot of effort avoiding foreign materials falling into the spent fuel pool, but failing to do so can mean months of downtime and tens of millions in costs so there isn’t some opportunity to save money by avoiding that regulation.
> Nuclear inherently need a lot more effort refining fuel as you can’t just dig a shovel full of ore and burn it. Even after refining you can’t just dump fuel in, you need fuel assemblies.
It's true that a pound of nuclear fuel costs more than a pound of coal. But it also has a million times more energy content, which is why fuel is only 15-20% of the operating costs compared to >60% for coal. And that's for legacy nuclear plants designed to use moderately high enrichment rates, not newer designs that can do without that.
> Nuclear must have a more complicated boiler setup with an extra coolant loop.
You're describing a heat exchanger and some pipes. If this is the thing that costs a billion dollars, you're making the argument that this is a regulatory cost problem.
> You need shielding and equipment to move spent fuel and a spent fuel cooling pond.
Shielding is concrete and lead and water. None of those are particularly expensive.
Equipment to move things is something you need at refueling intervals, i.e. more than a year apart. If this is both expensive and rarely used then why does each plant need its own instead of being something that comes on the truck with the new fuel and then goes back to be used at the next plant?
> Insurance isn’t cheap when mistakes can cost hundreds of billions.
This is the regulatory asymmetry again. When a hydroelectric dam messes up bad enough, the dam breaks and it can wipe out an entire city. When oil companies mess up, Deep Water Horizon and Exxon Valdez. When coal companies just operate in their ordinary manner as if this is fine, they leave behind a sea of environmental disaster sites that the government spends many billions of dollars in superfund money to clean up. That stuff costs as much in real life as nuclear disasters do in theory. And that's before we even consider climate change.
But then one of them is required to carry that amount of insurance when the others aren't. It should either be both or neither, right?
The problem with nuclear mistakes is they aren't a few decades. They can be measured in centuries.
So yeah. Regulation.
Don't build a damn LWR on a fault line (Fukushima) 3mile Island - don't have so many damn errors printing out that everything is ignore Chernobyl - we all know I think. It's still being worked on to contain it fully. Goiânia accident (brazil) - caesium-137 - Time magazine has identified the accident as one of the world's "worst nuclear disasters" and the International Atomic Energy Agency (IAEA) called it "one of the world's worst radiological incidents". (and this was just a radiation source, not a nuclear plant)
So yeah. Oil has bad disasters. Nuclear has EPIC disasters.
I think what is missing in your argument is not that these pieces are difficult. It's that combining all of them adds to a significant amount of complexity.
It's not JUST a heat exchanger. It's a heat exchanger that has to go through shielding. And it has to operate at much higher pressures than another type of power production facility would use. Which adds more complexity. And even greater need of safety.
I'm not arguing against Nuclear; I think it's incredibly worthwhile especially in the current age of AI eating up so much power in a constant use situation. But I do think it needs to be extremely regulated due to the risks of things going south.
> which is why fuel is only 15-20% of the operating costs compared to >60% for coal
Nuclear has much higher operating costs than coal. It’s not 20% of 3 = 60% of 1, but it’s unpleasantly close for anyone looking for cheap nuclear power. Especially when you include interest + storage as nuclear reactors start with multiple years worth of fuel when built and can’t quite hit zero at decommissioning so interest payments on fuel matter.
> You're describing a heat exchanger and some pipes. If this is the thing that costs a billion dollars, you're making the argument that this is a regulatory cost problem.
It’s a lot more than that, and far from the only cost mentioned. It’s pumps, control systems, safety systems, loss of thermal efficiency, slower startup times, loss of more energy on shutdown, etc.
> Shielding is concrete and lead and water. None of those are particularly expensive.
Highways don’t use expensive materials yet they end up costing quite a lot to build. Scale matters.
> Equipment to move things is something you need at refueling intervals, i.e. more than a year apart. If this is both expensive and rarely used then why does each plant need its own instead of being something that comes on the truck with the new fuel and then goes back to be used at the next plant?
Contamination with newly spent nuclear fuel = not something you want to move on a highway. It’s also impractical for a bunch of other reasons.
> But then one of them is required to carry that amount of insurance when the others aren't. It should either be both or neither, right?
No nuclear power plants has ever actually been required to carry a policy with that kind of a payout. Taxpayers are stuck with the bill, but that bill doesn’t go away it’s just an implied subsidy.
However, the lesser risk of losing the reactor is still quite substantial. You could hypothetically spend 5 billion building a cheap power plant rather than 20+ billion seen in some boondoggles but then get stuck with cleanup costs after a week.
Oh come on.
I consider myself reasonably pro nuclear, but this is just like some developer going:
“Oh yeah, that doesn't seem that hard, I could probably implement that in a weekend”
Fact: hard complicated things are expensive.
There is no “just it’s just some concrete…”.
That is, translated “I do not know what Im talking about”.
Hard things, which require constant, high level, technical maintenance…
Are very expensive.
Theyre expensive to build. Theyre expensive to operate. Theyre expensive to decommission.
Theres no magic wand to fix this.
You can drive down the unit cost sometimes by doing things at scale, but Im not sure that like 100 units, or even say 1000 units can do that meaningfully.
…and how how are we planning on having the 100000s of reactors that you would need for that?
Micro reactors? Im not convinced.
Certainly, right now, the costs are not artificial; if you think they are, I would argue you havent done your due diligence in research.
Heres the point:
Making complicated things cheaper doesnt just magically happen by removing regulations. Thats naive.
You need a concrete plan to either a) massively simplify the technology or b) massively scale the production.
Which one? (a) and (b) both seem totally out of reach to me, without massive state sponsored funding.
…which, apparently no one likes either.
Its this frustrating dilemma where idiots (eg. former Australian government) claim they can somehow magically deliver things (multiple reactors) super cheaply.
…but there is no reality to this promise; its just morons trying to buy regional votes and preserve the status quo with coal.
Real nuclear progress needs realistic plans, not hopes and dreams.
Nuclear power is better; but it is more expensive than many other options, and probably, will continue to be if all we do is hope it somehow becomes easy and cheap by doing basically nothing.
> Shielding is concrete and lead and water. None of those are particularly expensive.
Well, anything is expensive in enough quantity. But there is a bit of a tell not covered where of regulatory problems because nuclear plant projects keep going way over budget. Even stupid planners can notice trends of that magnitude and account for them, there is something hitting plant builds that isn't a technical factor and it is driving up costs.
It really is. Nuclear is 100-1000x safer than coal. By insisting on such an aggressive safety target, we force prices up and actually incur much higher levels of mortality - just delivered in the boring old ways of pollution and climate-driven harms.
See https://ourworldindata.org/safest-sources-of-energy for detailed stats.
I think we should target “risk parity with Gas” until climate change is under control.
When the nuclear industry feels confident enough to not need its own special law to protect it from liability in case of accidents, I’ll feel a little more confident in their safety rhetoric.
https://en.wikipedia.org/wiki/Price%E2%80%93Anderson_Nuclear...
The problem with nuclear is not the ultra-low probability of incidents, but the potential size of the incidents.
And then you have bad faith actors.
No one would ever put graphite tips in the control rods to save some money, wouldn't they?
No one would station troops during war in a nuclear power plant, wouldn't they?
No one would use a nuclear power plant to breed material for nuclear bombs, wouldn't they?
Finally, no CxO would cheapen out in maintenance for short term gains then jump ship leaving a mess behind, right?
None of that has never ever happened, right?
A Chernobyl level incident every single year would kill fewer people than the annual number of people that die from fossil fuel particulate emissions. We can imagine reasonable numbers of accidents and still be sure that it would be dramatically safer than fossil fuels, even ignoring climate change.
And the land rendered uninhabitable would represent less land lost than is expected to be lost from sea level rise, most of which will be extremely hi-value coastal areas.
There is no way you can run the numbers where nuclear, even with dramatically reduced safety standards, is not preferable to fossil fuels. By making it so expensive with such heavy regulations, all we have done is forced ourselves to use the worse-in-all-possible ways fuel source for most of a century, causing millions of premature deaths and untold billions in environmental damages.
Over-regulation of nuclear is high up on the list of greatest civilizational blunders humanity has ever made.
This statistic is very relevant here, and surprising to many! Deaths per kWh produced for all energy sources.
Solar and nuclear both really stand out immensely as the safer alternatives.
People tend to think of nuclear as dangerous, but that's just propaganda. There has been a lot of anti-nuclear propaganda over the years. But the numbers speak truth:
https://ourworldindata.org/grapher/death-rates-from-energy-p...
https://ourworldindata.org/grapher/death-rates-from-energy-p...
If one tries to quantify the value of those deaths, using the "statistical value of a human life" (somewhere around $12M/death), one finds in the case of both wind/solar and nuclear, using those numbers, the value of those lives contributes negligibly to the cost of energy. This is unlike with coal.
This means that in choosing between solar/wind and nuclear, one cannot use the deaths/TWh to choose between them unless they are almost dead even in other costs (and they are not).
> "It’s really not, nuclear inherently requires extreme costs to operate."
Not just to operate, but to clean up and decommission at their end of life. In the UK, for example, early reactors were built cheaply without much consideration/provision for eventual decommissioning. This has left an enormous burden on future taxpayers, estimated to exceed £260 billion, much of it related to the handling and cleanup of vast quantities of nuclear waste [1].
Thankfully new reactors are being financed with eventual decommissioning costs "priced in", but this is another reason why they've become so expensive.
[1] https://www.theguardian.com/environment/2022/sep/23/uk-nucle...
> cleanup of vast quantities of nuclear waste
The total high level, dangerous nuclear waste of the entire world since we started playing with nuclear power 70 years ago fits in an American football stadium with plenty of room to spare. "Vast quantities" is a serious exaggeration.
The UK alone had the following inventory of nuclear waste as of 2022:
~1,470 m³ "high level" waste totalling ~14,000,000 TBq at year 2100. "High level" waste is that which generates enough heat to require specially designed and managed storage facilitates to prevent spontaneous fires etc.
~496,000 m³ intermediate level waste totalling ~1,000,000 TBq at 2100
~1,340,000 m³ low level waste totalling ~130 TBq at 2100
~2,750,000 m³ very low level waste totalling ~12 TBq at 2100. VLLW is considered safe enough to be disposed at landfill sites subject to certain special considerations. But not until the radioactivity drops below a certain threshold, of course - it still has to be stored at special facilities for many decades until then.
It's a pretty vast and costly problem even if you don't consider this a "vast quantity".
Source for these figures: https://www.gov.uk/government/publications/uk-radioactive-wa...
>> Most of it are fake costs due to regulation.
>It’s really not, nuclear inherently requires extreme costs to operate. Compare costs vs coal which isn’t cost competitive these days
Maybe it can't be as cheap as coal, but at the very least it shouldn't be absurdly expensive compared to what South Korea and China can do.
https://www.economist.com/content-assets/images/20250906_WBC...
> It’s really not, nuclear inherently requires extreme costs to operate. Compare costs vs coal which isn’t cost competitive these days. Nuclear inherently need a lot more effort refining fuel as you can’t just dig a shovel full of ore and burn it. Even after refining you can’t just dump fuel in, you need fuel assemblies. Nuclear must have a more complicated boiler setup with an extra coolant loop. You need shielding and equipment to move spent fuel and a spent fuel cooling pond. Insurance isn’t cheap when mistakes can cost hundreds of billions. Etc etc.
Without the fear of dual use, we could just enrich the fuel to higher levels and refuel once per 30 years.
As an expert remarked way back in a time when the nukes were conveniently making plutonium, and kids got free comic books promoting them, and the plans for handling waste seemed sound :
"At present, atomic power presents an exceptionally costly and inconvenient means of obtaining energy which can be extracted much more economically from conventional fuels.… This is expensive power, not cheap power as the public has been led to believe."
— C. G. Suits, Director of Research, General Electric, who was operating the Hanford reactors, 1951.
(Hanford today, sitting on 56M gallons of leaking wastewater, is debating whether that newly-constructed vitrification plant should be allowed to operate, since it'll emit dangerous levels of toxic acetonitrile.)
Regulation still plays a role in the final cost. Sure it has to be safe. But we need to draw the line. Nuclear is arguably way too safe currently (zero death for a long time). Some regulations could be relaxed to speed up the construction, and make the operations cheaper.
We should have a discussion and review all the regulations surrounding nuclear.
I think if you regulated coal on a linear no threshold risk model, you'd find the costs to be somewhat closer.
Coal is already losing, and things are only getting worse for steady state production.
Grid solar drives wholesale rates for most of the day really low long before new nuclear gets decommissioned. If nighttime rates rise above daytime rates a great deal of demand is going to shift to the day. Which then forces nuclear to try and survive on peak pricing, but batteries cap peak pricing over that same timescale.
Nuclear thus really needs to drop significantly below current coal prices or find some way to do cheap energy storage. I’m somewhat hopeful on heat storage, but now you need to have a lot of turbines and cooling that’s only useful for a fraction of the day. On top of that heat storage means a lower working temperature costing you thermodynamic efficiency.
> Nuclear inherently need a lot more effort refining fuel as you can’t just dig a shovel full of ore and burn it.
You have to take scale into account. This is 20 years of spent fuel.
https://npr.brightspotcdn.com/dims4/default/cca0b8d/21474836...
That's it. 20 years. Just that, for a constant, quiet output of just about a gigawatt. And that's an old, decommissioned reactor.
You're right about nuclear fuel refinement, packaging, and so on being non-trivial, but the amount of it that you need is so miniscule that if you don't talk about volume you paint a misleading picture.
> small modular reactors are only making heat they don’t actually drive costs down meaningfully.
Mass production makes anything cheaper. Ask the French about their efficient reactor program.
If anyone is interested, here's a picture of decades worth of it[0]. I used to have a video of Russia's, but it seems to have gone down. If somehow you can way back it, here's the link[1].
For more comparison, France produces about 2kg of radioactive waste per year, which delivers 70% of the country's electricity. If you removed all nuclear power reactors you'd still be generating 0.8kg of radioactive waste[2]. It'll work it's way out to on the order of (i.e. approximately) a soda can per person per year.
I think people grossly underestimate the scale of waste in many things. Coal produces train loads a day (including radioactive and heavy metals), while nuclear produces like a Costco's worth over decades. The current paradigm of "we'll store it on sight and figure it out later" isn't insane when we're talking about something smaller than a water tower and having about 300 years to figure out a better solution.
On the flip side, people underestimate the waste of many other things. There are things much worse than nuclear waste too. We spend a lot of time talking about nuclear waste yet almost none when it comes to heavy metals and long lived plastics. Metals like lead stay toxic forever and do not become safer through typical reactions. We should definitely be concerned with nuclear waste, but when these heavy metal wastes are several orders of magnitude greater, it seems silly. When it comes to heavy metals (lead, mercury, cadmium, arsenic, etc) we're talking about millions of tonnage. These things are exceptionally long lived, have shown to enter both our water supply and atmosphere (thanks leaded gasoline!), and are extremely toxic. It's such a weird comparison of scale. Please take nuclear waste seriously, but I don't believe anyone if they claim to be concerned with nuclear waste but is unconcerned with other long lived hazardous wastes that are produced in billions of times greater quantities and with magnitudes lower safety margins.
[0] https://x.com/Orano_usa/status/1182662569619795968
[1] https://www.youtube.com/watch?v=_5uN0bZBOic&t=105s
[2] https://www.orano.group/en/unpacking-nuclear/all-about-radio...
> nuclear inherently requires extreme costs to operate.
True, but you also get large amounts of electricity in return.You're over simplifying and cherry-picking. Is it a big deal if it costs 10x more if it produces 20x more power? What about 10x the cost, 10x the power (so equal $/MWhr) but 0.1x the land? What about 10x cost, 10x power, 1x land, but 10x more power stability? As in fewer outages. How much will you pay for 99.999 than 99.99?
The problem with the vast majority of these energy conversions is that people act like all these costs are captured in the monetary metric. I'm sorry, the real world is complex and a spreadsheet only takes you so far. There's no one size fits all power source. The best one to use depends on many factors, including location. If you ignore everything and hyper focus on one metric you're not making an informed decision that's "good enough" you're arrogantly making an uninformed conjecture.
I'm surprised how often this needs to be said (even to pro nuclear folks), but nuclear physics is complicated. Can we just stop this bullshit of pretentiousness masquerading as arrogance?
> It’s really not, nuclear inherently requires extreme costs to operate. Compare costs vs coal which isn’t cost competitive these days. Nuclear inherently need a lot more effort refining fuel as you can’t just dig a shovel full of ore and burn it.
This is based on reactors with poor efficiencies that leave a lot of unburned Uranium in their waste. Fast reactors and thorium reactors burn 90% of fissile material, so mining costs are significantly lower for the same power output.
> Insurance isn’t cheap when mistakes can cost hundreds of billions.
Total death count from nuclear is lower than the death count of wind and solar. Falling off roofs happens a lot more frequently than nuclear accidents. This is a nothingburger, particularly given new reactor designs are meltdown proof.
> Total death count from nuclear
Total death count is a straw man argument, what matters here is the economic costs.
Mining isn’t the major cost, nuclear fuel is expensive for other reasons. Refining gets rid of even more uranium before it gets to the reactor. CANDU tried to get around that by using unenriched uranium, but ran into other issues.
And that’s what pro nuclear people seem to miss, really smart people have been trying to solve this issue for decades there’s no easy solutions with well understood downsides. Let’s quickly build some new design isn’t a solution it’s a big part of why nuclear construction costs are so high.
A major reason nuclear plants are super expensive is because we do it so rarely
Every reactor and every plant is bespoke, even if they are based on a common "design" each instance is different enough that every project has to be managed from the ground up as a new thing, you get certified only on a single plant, operators can't move from plant to plant without recertification, etc
Part of that is because they are so big and massive, and take a long time to build. If we'd build smaller, modular reactors that are literally exactly the same every single time you would begin to get economies of scale, you'd be able to get by without having to build a complete replica for training every time, and by being smaller you'd get to value delivery much quicker reducing the finance costs, which would then let you plow the profits from Reactor A into Reactor B's construction
> A major reason nuclear plants are super expensive is because we do it so rarely
Once you have your supply chain running, and PM/labour experience, things can run fairly quickly. In the 1980s and '90s Japan was starting a new nuclear plant every 1-2 years, and finishing them in 5:
* https://en.wikipedia.org/wiki/List_of_commercial_nuclear_rea...
France built 40 in a decade:
* https://worksinprogress.co/issue/liberte-egalite-radioactivi...
More recently, Vogtle Unit 3 was expensive AF, but Unit 4 cost 30% less (though still not cheap).
Exactly. What is needed is a SpaceX-like enterprise, where the engineering effort is concentrated in building economies of scale. To me it's clear that nuclear energy's pros largely outweigh the cons, and that it is a perfect complement to solar and wind power generation.
We can't blow up nuclear reactors to learn how they failed like spaceX does with rockets.
> What is needed is a SpaceX-like enterprise
I'm not sure. They have more injuries per worker than their competition [1]. Space should already not be "let's work too fast at safety's cost", nuclear really can't.
[1] https://techcrunch.com/2025/07/18/spacex-worker-injury-rates...
It isn't that rare in general - if the U.S. opens the secrets of nuclear submarines - we had had mini reactors for decades.
Total non starter.
Nuclear submarine power plants are not in any way a technology useful for utility scale power generation.
To start with they use fuel enriched to weapons grade.
They aren't cost effective vs the amount of power produced, and the designs don't scale up to utility scale power.
Submarine plants are not some sort of miracle SMR we can just roll out.
The Navy is willing to page cost premiums a utility company cannot, because for the Navy it's about having a necessary capability. There's no economic break even to consider.
At least Russia is doing fine with SMRs, thought the fuel enrichment level is around 20%. They are building new reactors all the time and they seem pretty efficient. E.g. they have even floating nuclear plant: https://en.wikipedia.org/wiki/Akademik_Lomonosov
I'd be fine with us just having the USA navy operate them we build them for carriers and subs just double or triple the order and plug em into the grid.
There are some companies that are trying to get SMRs up and running.
https://www.ans.org/news/2025-02-05/article-6744/new-swedish...
We’ll see how it goes.
We’ve been trying to build ”SMR”s since the 1950s and a bunch has been built throughout the decades.
https://spectrum.ieee.org/amp/the-forgotten-history-of-small...
The problem is: who pays for the hundreds of prototypes before the ”process” has worked?
> If we'd build smaller, modular reactors that are literally exactly the same every single time you would begin to get economies of scale
You can also build standardized, modular LARGE nuclear power reactors. The French and the Japanese did it and managed to builds lots of large reactors with relatively short build times
A nuclear fission power plant is never going to be cheaper than a coal plant, and coal plants are very expensive. They're superficially similar types of plants: they heat water and then use a steam turbine to convert it to electricity. Coal plants use higher temperatures and pressures, so they can use smaller turbines. That turbine is a massive part of the cost.
Yes, there's room to drive down the cost of nuclear. No, it's never going to be cost competitive with solar/wind/batteries, no matter how much you drive down the cost or eliminate regulations.
I'm talking about capital costs, not operating costs. $3B/GW for a coal plant is about 5X as much as natgas.
Does that calculation include the cost of storing the nuclear waste after use? I'd be curious to see a reference for your claim.
We need to drive down the cost of dealing with nuclear waste. Possibly to zero, because that is a cost that will have to be paid basically forever.
Between 1961 and 2023 «5,600 TWh of electricity were generated from nuclear energy in Germany». [1]
Every year Germany spends (and will have to spend until the end of time) at least 2 billion Euros just to keep the existing nuclear waste safe [2] (more than half of the yearly budget of the ministry of the environment and about 0.5% of the yearly government budget). That's a drag. Think about it: it's all unproductive money, that does not produce any new energy, and stopping these payments will cause irreparable damage to the environment. Forever.
[1] https://kernd.de/en/nuclear-energy-in-germany/ [2] https://www.bundesumweltministerium.de/ministerium/struktur/...
This is said a lot but I don't think regs as written are necessarily the major cost driver. I did a nuclear industry survey to ask what specific regulations people would want changed recently. The one where using commercial grade QA instead of nuclear grade is very interesting.
I think industry overreaction to the regs is possibly as large or larger of a problem than the regs themselves.
https://whatisnuclear.com/news/2025-05-23-regulatory-reforms...
I'm a bit miffed I can't find the article now, but I recall hearing it was more the reactor design approval process than the operational process regulations that interfered with and drove up costs. Every tiny detail of a site has to be taken into account, forcing modifications to existing designs such that every build ends up being bespoke anyway. On top of that, many of the rules around the design approval process are geared towards older generation reactors and newer generation reactors end up being cost ineffective because they need to account for things that don't apply to them.
If anyone remembers that article, I'd love to cite it here. If not, feel free to ignore what is otherwise unfounded speculation I guess.
Maybe this article?
https://www.construction-physics.com/p/why-are-nuclear-power...
There is some regulatory burden for sure. But the NRC has been very conducive to standardization, and approved construction and operation licenses of like 20 brand new latest generation water-cooled reactors in the first nuclear Renaissance (2006). It was Fukushima and fracking that killed that Renaissance, not regulations.
https://www.nrc.gov/reactors/new-reactors/large-lwr/col-hold...
The NRC has also been generous with advanced reactor licenses, granting construction licenses for the Kairos Hermes 1 and 2 molten salt cooled test reactors recently. And one for the Abilene Christian university's molten salt fueled reactor too!
https://www.energy.gov/ne/articles/nrc-approves-construction...
A lot of the tech world got it in their heads that nuclear regs are the main issue in nuclear when in reality it is still megaprojects construction management. The small advanced reactors are likely to be very expensive per kWh
> It was Fukushima and fracking that killed that Renaissance, not regulations.
It was mostly fracking. Most plans for new builds had already been put on hold by the time Fukushima occurred. New nuclear in the US made zero sense when gas is cheap and combined cycle power plants are 10% of the capex/power.
And since then, renewables and storage have crashed in price, nailing shut nuclear's coffin lid.
> I think industry overreaction to the regs is possibly as large or larger of a problem than the regs themselves.
I see this over and over again in regulated industries like banking and healthcare. No one wants to risk tripping up the regulations so company lawyers write up crazy and often conflicting “requirements” to satisfy legislation. The limitations placed by company council are often far more restrictive than regulations actually require. You have lawyers dictating engineering or software design requirements based off of a shoddy understanding of other lawyers attempts to regulate said industries they also don’t really understand.
And this isn’t to say that engineers are somehow better at this than lawyers. Engineers make just as many of these sorts of mistakes when developing things via a game of telephone. As someone who has played the architect role at many companies, it’s not enough to set a standard. You have to evangelize the standard and demonstrate why it works to get buy in from the various teams. You have to work with those teams to help them through the hurdles. Especially if you’re dealing with new paradigms. I don’t know to what degree this happens for other industry standards. But it seems like mostly folks are left to figure it out themselves and risk getting fined or worse if they misinterpreted something along the way.
I’d like to believe there is a way to balance lenience for companies that are genuinely trying to adhere to regulations but miss the mark at places and severely cracking down on companies that routinely operate in grey areas as a matter of course. But humans suck. And lenience given is just more grey areas for the fuck heads to play in. We cannot have nice things.
I have ideas of a plan to help in nuclear, which is to make open source reactor company quality assurance and engineering procedures that establish clear compliance with regs but also incorporate all sorts of efficiency lessons learned
As someone also served by PG&E I don't think cheaper electricity will help. At peak hours electricity is $0.13/kwh but the delivery charge is $0.50/kwh.
> At peak hours electricity is $0.13/kwh but the delivery charge is $0.50/kwh.
Unfortunately, transmission has a natural monopoly risk, unless the government owns without profit requirements. The price peak is when it is just cheaper to make second set of lines next to old one and you can still pay the investment with fewer customers and lower price.
At some point the electricity will be near-free, and we'll just pay transmission fees
Which are the fake costs from regulation?
We have new builds in Europe of the EPR, in France and Finland, and it has had disastrous costs. China has built some too, presumably cheaper, since they keep on building more. What is the regulatory difference there?
I have yet to find any concrete defense of the idea that costs are coming from regulation, rather than the costs of construction in advanced economies.
If regulations are the cost, name them and a solution. Otherwise it seems like we are wasting efforts in optimizing the wrong thing for nuclear.
> I have yet to find any concrete defense of the idea that costs are coming from regulation, rather than the costs of construction in advanced economies.
One of the main drivers of excessive costs of construction in advanced economies are from excessive regulations, so it's really one in the same. Nuclear is obviously more regulated than other industries, and it routinely faces more frequent, longer delays and higher cost overruns than projects of comparable scale and complexity. This study [1] goes into a lot more detail.
Digging more into the details, it's all linked. The lack of regulatory clarity means that designs have to be changed more after construction starts, requirements for redundancy increase complexity, changing regulations prevents standardization, etc. Prescriptive regulations which were created decades ago limit the cost savings possible with newer technologies, like improved reinforced concrete. This study [1] goes into a lot more detail.
> Our retrospective and prospective analyses together provide insights on the past shortcomings of engineering cost models and possible solutions for the future. Nuclear reactor costs exceeded estimates in engineering models because cost variables related to labor productivity and safety regulations were underestimated. These discrepancies between estimated and realized costs increased with time, with changing regulations and variable construction site-specific characteristics.
[1] https://www.sciencedirect.com/science/article/pii/S254243512...
> The lack of regulatory clarity
Oddly enough, that sounds like a request for more regulation. And I have heard many people say that if the regulators had made sure that if approval had gone beyond mere safety, into constructibility and other areas, that Vogtle would have been closer to the initial budget, and that Summer might have completed.
Thank you for the link, and I will read it in detail later, but at a high level, I think it's great support for my point that it's construction productivity that's the key driver of cost, not regulation (emphasis mine):
> Relatedly, containment building costs more than doubled from 1976 to 2017, due only in part to safety regulations. Costs of the reactor containment building more than doubled, primarily due to declining on-site labor productivity. Productivity in recent US plants is up to 13 times lower than industry expectations. A prospective analysis of the containment building suggests that improved materials and automation could increase the resilience of nuclear construction costs to variable conditions.
Its multifold.
1. Regulations are a big asterisk to any project. If you don't think you will get licensed or your project will get axed halfway through or there is a risk (Which has been very high in the past). Investors who would put money up for the project won't do it OR they require a significantly higher cost of capital. 2. There is very little muscle memory in the fabrication of reactors and reactor components in north America because we de facto shut down the industry from 80s until 20s. Therefore the first projects will cost more money as we recover our abilities to fab. 3. The licensing and regulatory costs are also incredibly high - and you cant make any adjustments if you kick off the project or you restart the process. This leads to massive cost over runs.
China and Korea are currently building reactors about 1/6 the costs of the US I believe.
China is building US and EU designs of reactors at a fraction of the costs in the US and Europe.
Your examples of regulatory asterisks are on the design side of things. I don't think that the cost of capital for Vogtle & Summer in the US, or Flamanville and Olkiluoto in the EU, were excessively high. As for your 3rd point, there were tons of adjustments during the build of Vogtle, which is a big reason for its large cost overruns. Regulation didn't necessitate those changes, they were all construction bungles.
Which I think leads to your point 2, construction competence, being the primary cause, which aligns with everything else I have read on the subject. For example, another poster pointed to this paper:
> We observe that nth-of-a-kind plants have been more, not less, expensive than first-of-a-kind plants. “Soft” factors external to standardized reactor hardware, such as labor supervision, contributed over half of the cost rise from 1976 to 1987. Relatedly, containment building costs more than doubled from 1976 to 2017, due only in part to safety regulations.
> If regulations are the cost, name them and a solution.
That is a funny ask. Regulation doesnt have to be a single thing. It can very well be cost-overrun by a thousand paper cut. You can drown any project in endless paperwork, environmental and national security reviews. In fact unclear and contradictory requirements are much more conductive to drive costs up than a single Lets-make-nuclear-expensive-Act.
That being said if you need to pick a single thing (which is silly) then the “As Low As Reasonably Achievable” principle of radiation protection is a prime candidate. When you have a safety limit you can design a system to remain under it. When you are designing a sytem for the ALARA principle that in itself will blow your costs up.
You're getting downvoted, but you're correct. It's death by a thousand cuts, because ALARA forces radiation exposure-reduction expenditures to scale upward forever, despite the fact that radiation exposure from plants long ago reached levels far below those that result in any risk. There is no lower bound, so the regulators never stop reducing exposure further, raising costs further and further over time.
Under ALARA, nuclear literally isn't allowed to reduce market electric costs, because the requirements for reducing exposure scale to what keeps it competitive with other forms of production! If all other electric costs doubled tomorrow, the NRC would respond by raising the requirements for plants to reduce radiation exposure.
If that sounds insane, it's because it's insane. Our nuclear regulations are insane.
ALARA would indicate that the increased costs from regulation are due to the design of the reactor.
However, my example is of reactors that China can build cost effectively, but which Europe can not. (And the AP1000 is an example where China can build the design cost effectively, but the US can not.)
That would indicate that nuclear reactors could be built cost effectively, with the same design, and without changing ALARA.
Removing ALARA may provide some sort of cost savings, but without some concrete and specific indication of how that would change the design, and to what savings during construction, it's hard to agree that ALARA is at fault.
All the safety and countermeasure costs here ultimately stem from regulation. If we allowed less safe power plants, they would likely be cheaper to build and operate.
However, I’m not sure I want private for profits actor deciding the level of safety of such projects.
We have one model for cheaper construction of nuclear, using exactly the same designs as in the US (AP1000) or EU (EPR), and that example is China.
I don't think China is building them any less safe. I don't think the regulations are significantly different.
I don't think any of the designers of the nuclear reactors want to build them any less safely, either, because they are not asking for that.
Many of the "safety" stuff is also about prolonging longevity of the reactor as long as possible. Like really inspecting the welds on tubing, etc. Any reduction in safety there also ultimately increases costs by reducing the lifetime of the plant or heavily increasing maintenance costs.
That's why I don't think this is a tradeoff between safety and cost. I think it's a tradeoff between construction/design competence and cost.
It takes 15 years to build a nuclear power plant. It shouldn't take this long at all and it's strictly because of regulations. If we cut down the time it takes to build a plant the cost plummets.
Which regulations?
What would change in the construction process?
China builds the same designs as the EU and US, yet faster. What is different?
I saw toooooooons of reports of construction mishaps in the US at Vogtle and Summer. I didn't see anything about "oh if we changed this sort of regulation it would have saved us money."
It's a very worthwhile to read the retrospectives on these builds. There are lots of plans of future builds of the AP1000 that would be cheaper, but none of the plans even indicate that a regulation change would help.
I beg of people who say regulations are in the way: which regulations? Concretely, what should change to make construction cheaper? Pun intended.
Nuclear regulations are no worse than aviation regulation. Yet planes manage to be cost competitive.
Cutting regulations isn't necessary the win people think. If safety regulations are cut, it risks accidents in future.
Nuclear needs to move from bespoke builds to serial production.
But what are the specific regulations you would cut, dude?
Shouldn't the burden of proof belong to those that claim that regulation isn't the cost, when it is so extremely obvious to anybody who has ever had to build anything that it is?
Just look at building costs in California vs Texas. Both are nominally constituents of the same "advanced economy".
If you're proposing a change, shouldn't the change be specifiable? Why is the burden of proof on those asking "what change?" to demonstrate that no change is possible? That's a complete inversion of responsibility.
I have a whole host of clearly specifiable changes to California building law that will make it cheaper, and am actively working on them both locally and at the state level! This is clear!
As somebody who is very interested in making Calforina housing cheaper, and in particular housing construction cheaper, it is my duty to say what should change, why, and convince others of it.
If I go out and advocate for "change" without being able to specify a single change, I would get jack shit done. It doesn't work that way.
Every single nuclear advocate that I have ever met that says "regulations should change" can still not yet specify how those regulations should change. That's the minimal bar for holding an opinion.
Reading the DoE LPO report on how nuclear can scale up and get cheaper, it wasn't regulations doing the work. It was learning how to build.
> I think they should all be government projects so that private companies can't complain that they're losing money and keep have to ratchet up the prices, like PG&E in California.
I grew up a few miles away from SMUD's Rancho Seco nuclear power plant; I maintain that shutting it down was SMUD's worst decision. There were problems motivating that shutdown, yes, but nothing that couldn't have been solved.
Yeah it seems like having State control is not a silver bullet
Found the fatal flaw, and right here it is in glorious action:
> and strong regulations and safety culture ensure that it remains one of the safest forms of energy available to humanity.
It is thinking like the comment above why nuclear power is unsafe and will be unsafe as long as the drive to reduce the expense is viewed as "fake costs due to regulation."
No, that person does not understand larger human culture and how it destroys anything with a nuance to understand, such as the need for regulations.
Your rates aren't doing insane shit because you don't have nuclear energy. Renewables are way way way cheaper.
How much of that rate is because China is flooding the market with wind turbine blades and solar panels?
How much would it cost if China turns off that supply?
> How much would it cost if China turns off that supply?
Buy them while they're selling cheap. They're good for at least 20 years. Plenty of time to stand up domestic manufacturing if they cut you off.
To use wind turbines as an example, more than 50% of the various bits are manufactured here in the US. For turbines destined US wind farms, at least.
Or acknowledge the true cost of $10 billion to build a reactor. Look at recent implementations. Finland was complaining that they had to deal with the mafia. The plant cost €11 billion, original proposal: €3 billion. Yikes.
"... 3,800 employees from 500 companies. 80% of the workers are foreigners, mostly from eastern European countries. In 2012 it was reported that one Bulgarian contracting firm is owned by the mafia, and that Bulgarian workers have been required to pay weekly protection fees to the mafia, wages have been unpaid, employees have been told not to join a union and that employers also reneged on social security payments."
> Or acknowledge the true cost of $10 billion to build a reactor. Look at recent implementations. Finland was complaining that they had to deal with the mafia. The plant cost €11 billion, original proposal: €3 billion. Yikes.
This particular plant is a terrible example. It was the first of its kind, so it was bound to be more difficult than as part of a series. For example, there were issues with contractors that would not have happened if it had been the 5th reactor with the same specs. There were also issues with project management and changing regulations, which prompted some extensive tweaking of the reactor core almost as it was built. This is not representative of the difficulty of building a reactor that is par tof a fleet with identical designs.
It is not like nth of a kind Hinkley Point C, EPR reactor number 5 and 6, at $32.5B per reactor is going any better?
Also do note that no one knows the true cost of Olkiluoto 3. The $11B figure is from a settlement many years before it was completed as interest and construction costs kept accumulating.
Since the OT is about EU, it is important to keep in mind that costs per MW are much lower in EU than in the US (or the UK).
E.g. according to https://www.samdumitriu.com/p/infrastructure-costs-nuclear-e..., UK/US is ~10 millions GBP, France ~4.5, and China/Korea/Japan around 2.5.
I don't know much about nuclear plan, but I doubt UK are much safer in practice than French ones, or even Korean/Japanese ones. I suspect most of the cost difference across countries of similar development to be mostly regulation. And it is a nice example that sometimes EU can be better than the US at regulations :) (I don't know how much nuclear-related regulations are EU vs nation-based though).
I am pretty sure governments around the world want it to be cheaper, but at the same time know that it must be very strictly regulated. Even if that makes it pricier, one can't call that "fake costs".
Also, it takes decades to build them, very often then also getting delayed. Why even consider it nowadays?
Maybe roll back regulation to when France rolled out the Messmer plan?
They spent 1/4th of what we do today.
Many people see top-line rate increases and assume the issue is supply cost, but transmission and distribution have become over 50% of cost everywhere I’ve lived, and are growing fast, regardless of underlying generation or fuel costs. Distribution alone (the neighborhood/local grid) is now roughly matching the supply cost on my MA bill, and though I last lived in CA in 2019, I would be surprised if PG&E weren’t similar.
Nuclear energy requires high-end engineering and manufactoring skills. Both vanish in the west more and more, particularly in the US.
China can build nuclear plants just fine because they have the manufactoring and engineering quality and quantity. Where did they get that? We gave it to them and even financed it.
The crisis of the west is a crisis of production. To bury regulations just means to keep a failing system afloat for another short while. Regulations exist to prevent another Chernobyl, thanks.
A big part of the cost is financing the project. It is capital intensive, and even few interest points more impact a lot the cost over time.
Those project should be finance with the cheapest money possible (usually government backed loans). UK is an example of nuclear getting expensive due to private investment instead of government.
This should be a quick reminder to the crowd -- Nuclear is almost always a public/private partnership to manage the project development costs and to keep the cost of capital in a reasonable range. The costs are large for a private company to put up the capital with the risk involved.
I can see a future where everyone can have free access to nuclear power.
I'm not an expert but I recall watching documentary on the eve of personal computing and someone saying that the phrase "personal computer" sounded as alien as "personal space station".
Sure, won't happen tomorrow, but it's nice thing to dream of.
> We need to drive down the costs of implementing nuclear energy. Most of it are fake costs due to regulation.
Chernobyl melted down and exploded.
Three Mile Island melted down and the regulatorily mandated containment vessel protected the public.
I wouldn't call that a fake cost.
More people die every single year from the radiation parts of coal power (excluding accidents), than have died from radiation of nuclear power's entire decades long history, including accidents.
Yes, they should be made safe, but we need some perspective here.
Maybe there’s a deal to be made where France builds and operates nuke plants in the US and handles the spent fuel as well. They’ve gotten quite good at it, and that could bypass a lot of the regulatory quagmire tied to a new home grown design and the reprocessing hazard.
You should look more closely at your PG&E bill. There are some hidden CA taxes in there.
Also PG&E was forced to divest most of their generation assets, so I believe that much of the grid power down there is not under PG&E's control
Edit: Finally, any Western US utility needs to bear the cost of wildfire liability. Whether that is a state-owned utility or private, the cost is still there.
$50M is obscene, but not really a needle mover for rate payers. You could pay the whole executive team $0 and it would save the average residential ratepayer a few bucks per month, probably less than $5 per month.
It is under regulation that is the problem here. PG&E has caused multiple huge disasters through negligence that have caused deaths and billions in damages that they pass on to rate payers. And this is after they redirected funds for maintenance directly to executive compensation.
The regulators should have thrown the hammer down on PG&E then, but after the disaster happens the money has to come from somewhere. Even if PG&E declares bankruptcy, the grid must run, and people must be able to rebuild their destroyed homes.
A public utility would be better than this sort of parasitic investor owned utility. Or, lots more regulation, and lots more jail time.
> We need to drive down the costs of implementing nuclear energy. Most of it are fake costs due to regulation.
I shouldn't be surprised by this comment. There are so many people who believe we should allow more pollution in the air we breathe and water we drink [1] just to increase the profit margins for shareholders.
[1] https://www.npr.org/sections/shots-health-news/2025/05/14/nx...
The reason PGE is so expensive is because it's a privately owned monopoly with a fiduciary duty to maximize shareholder returns. Additionally, the urban areas of California are subsidizing the fire prone rural areas of the state.
The "fake costs" are not primarily from regulation as much as it is from the need to squeeze profit. For comparison, look at Silicon Valley Power which is owned and operated by the city of Santa Clara. SVP charges $0.175/kwh vs PGE $0.425/kwh. [1]
[1] - https://www.siliconvalleypower.com/residents/rates-and-fees
>the urban areas of California are subsidizing the fire prone rural areas of the state
Meanwhile Rural California is where the electricity is actually generated[1]; they're "subsidizing" urban use.
>SVP vs PG&E
This has nothing to do with the ownership model and everything to do with not being obligated to serve rural areas. They get to serve only lower cost dense areas
[1] https://en.wikipedia.org/wiki/List_of_power_stations_in_Cali...
True that SVP benefits from not serving a rural area, but we also need to consider again that PGE is a for-profit organization that in 2024 posted $2.5B in profits, which were distributed to shareholders[1]. If PGE were owned by the state with no such fiduciary duty, this money could instead be used to lower rates and/or invest in infrastructure.
[1] - https://www.zacks.com/stock/quote/PCG/income-statement?icid=...
What about long term environmental cost? I might consider your preference if you agree to have all the nuclear waste dumped in your families backyard. Until then, I'd rather not have that waste produced in the first place.
>Most of it are fake costs due to regulation.
Which costs are you thinking about here? Please be specifc, provide details about regulations which are not needed, why they're not needed, and what they add to the cost of a nuclear plant.
Sorry for the tone, but I think your statement is extraordinarily wrong - and at the same time it's being repeated very often lately but never with any specifics. I'm genuinely curious what it is based on.
That is what we did 20 years ago when the renewable industry barely existed.
What has happened since is that the nuclear industry essentially collapsed given the outcome of Virgil C. Summer, Vogtle, Olkiluoto, Flamanville and Hinklkey Point C and can't build new plants while renewables and storage are delivering over 90% of new capacity in the US. Being the cheapest energy source in human history.
We've gone past the "throw stuff at the wall" phase, now we know what sticks and that is renewables and storage.
> I think they should all be government projects so that private companies can't complain that they're losing money and keep have to ratchet up the prices, like PG&E in California.
If you think PG&E jacking up prices has anything other than greed, hubris and decades of short term thinking behind it, I have news for you.
And thats is why people look at nuclear and say "no thanks". The same corporate structures that hid data about smoking, PFAS and oxycodone are the ones you want running a nuclear plant?
Can you make a nuclear plant safe, small and useful: yes. The navy has been doing it for decades now with nary an incident. That doesn't mean you can do it outside a rigid structure where safety and efficiency are above costs. The moment you make that other constraint a factor something else has to give.
> The same corporate structures that hid data about smoking, PFAS and oxycodone are the ones you want running a nuclear plant?
Thanks for expressing my concerns over nuclear so clearly. It's not the technology I fear, its the people in charge.
Combined with democracy, it means that even if we trusted our governments today to police nuclear companies, they are replaced every few years. Nobody knows who will be in charge in 10 or 20 years time.
We should simply not build this large dangerous technology because rules and regulations will not keep us safe.
You should fix your model of governance, because by that measure, any hope for progress is futile. The simple fact that we were better a few decades ago should be comforting. Enough of the shirt term profiteering sociopaths running the show, we can certainly cautiously swing back towards more technocracy and careful strategic planning.
Ah. The brilliant argument that nuclear power is perfectly safe and if we just eliminate all these pesky safety regulations it will be cheaper too! I often wonder what it would take for me to maintain a belief against literally all published evidence. Nuclear power evangelicals are basically trying to spread a religion at this point. Right along side flat earthers and antivaxxers. We just have to take on faith all of these things that they claim and ignore decades of actual evidence about the economics of power generation.
> the costs of implementing nuclear energy. Most of it are fake costs due to regulation
Regulation yes but I wonder how much of it is just "boomer engineering"
Nuclear efforts should be directed into the safest and simplest designs. Designs that need water pumps to cool (like Fukushima) are the type of unnecessary risk and complexity that nobody needs
It’s always funny to me to see folks with the “HN leans _________” comments every few days with the blank spot filled in with every single political position one can think of.
HN leans to perfect diversity: power distribution is so boring. :D
I don't think anyone wants to get rid of nuclear regs entirely. There is a popular perception (i dont know if actually true) that safety regs were built around first generation reactor designs which were designed in an inherently unsafe way, and for modern designs that are inherently safer, it makes sense to relax some regulations.
Advocating for deregulation in order to achieve innovation is the opposite of conservative.
It’s not a matter of being a for profit or not. It’s an also matter of technological development. Most of the early incidents in nuclear plants happened under the management of public or state controlled companies.
> Advocating for deregulation in order to achieve innovation is the opposite of conservative.
Not sure how it's the opposite of conservatism to remove unneeded government roadblocks to enable industry. That's pretty solidly in the traditional American conservative viewpoint (not to be confused with whatever viewpoint currently dominates the GOP).
No one is saying there shouldn't be regulations on nuclear.
But our regulations on nuclear are utterly insane -- every time I get someone to read into the reasons nuclear here has been so much more expensive than safe nuclear in other countries with more reasonable regulations around it, they come away shellshocked. It takes a while to understand what's going on, because it's truly death by a thousand cuts, but the unifying principle is the NRC's ALARA ("As Low As Reasonably Achievable") principle (with honorable mention going to the NRC's Linear No-Threshold harm model, which despite the evidence assigns a linear cancer incidence to radiation dosing).
Getting radiation exposure "As Low As Reasonably Achievable" sounds like a nice idea. But there's no lower bound, so the costs scale infinitely, gutting the incentives to innovate and invest. If the prices of other forms of energy go up, regulators intentionally raise the costs of nuclear comparably by increasing what must be spent on reducing radiation exposure. New innovative plant design that increases margins? Guess what -- that's another opportunity to use the money to lower radiation exposure even further.
The lack of a lower bound results in absurd results, because we long ago decreased the exposure from plants to far below background radiation levels, and far below the levels at which we've been able to observe harm.
We need to replace the LNT model with a sigmoid model that aligns with the science on radiation harms, and we need to remove the infinitely-scaling ALARA standard. Doing these will not increase risks, but will decrease costs a large amount in the short run and even more in the longer-term.
I completely agree with you and I'm pro nuclear. But those regulations have to be streamlined and the regulator needs to have enough manpower so licenses aren't stuck in limbo for years.
It's also unacceptable that the regulations can change during builds and then you have to make large parts completely new before you get the license to load fuel into the reactor.
Whether you're pro-nuclear or not, this ruling feels like a turning point. For decades, nuclear has been stuck in a weird limbo. Fascinating how youth climate activists are now some of the strongest voices for nuclear. That would've been unthinkable 10 years ago