Comment by antonvs
Comment by antonvs 11 hours ago
Your perspective is incorrect.
Physical entropy governs real physical processes. Simple example: why ice melts in a warm room. More subtle example: why cords get tangled up over time.
Our measures of entropy can be seen as a way of summarizing, at a macro level, the state of a system such as that warm room containing ice, or a tangle of cables, but the measure is not the same thing as the phenomenon it describes.
Boltzmann's approach to entropy makes the second law pretty intuitive: there are far more ways for a system to be disordered than ordered, so over time it tends towards higher entropy. That’s why ice melts in a warm room.
My take, for what it's worth,
Entropy isn’t always the driver of physical change, sometimes it’s just a map.
Sometimes that map is highly isomorphic to the physical process, like in gas diffusion or smoke dispersion. In those cases, entropy doesn't just describe what happened, it predicts it. The microstates and the probabilities align tightly with what’s physically unfolding. Entropy is the engine.
But other times, like when ice melts, entropy is a summary, not a cause. The real drivers are bond energies and phase thresholds. Entropy increases, yes, but only because the system overcame physical constraints that entropy alone can’t explain. In this case, entropy is the receipt, not the mechanism.
So the key idea is this: entropy’s usefulness depends on how well it “sees” the real degrees of freedom that matter. When it aligns closely with the substrate, it feels like a law. When it doesn't, it’s more like coarse bookkeeping after the fact.
The second law of thermodynamics is most “real” when entropy is the process. Otherwise, it’s a statistical summary of deeper physical causes.