Comment by markisus
Gaussian Splatting allows you to create a photorealistic representation of an environment from just a collection of images. Philosophically, this is a form of geometric scene understanding from raw pixels, which has been a holy grail of computer vision since the beginning.
Usually creating a Gaussian splat representation takes a long time and uses an iterative gradient-based optimization procedure. Using RGBD helps me sidestep this optimization, as much of the geometry is already present in the depth channel and so it enables the real-time aspect of my technique.
When you say "big deal", I imagine you are also asking about business or societal implications. I can't really speak on those, but I'm open to licensing this IP to any companies which know about big business applications :)
So, is there some amount of gradient-based optimization going on here? I see RGBD input, transmission, RGBD output. But, other than multi-camera registration, it's difficult to determine what processing took place between input and transmission. What makes this different from RGBD camera visualizations from 10 years ago?