Comment by avianlyric
Comment by avianlyric 16 hours ago
You’re ignoring one critical difference between these two scenarios. Humans, and all human related activities, produce heat as a waste product. It’s much easier, and consumes less additional energy, to heat an occupied space, than to cool it. Thanks to the fact that your average human produces 80W of heat just to stay alive.
So every human in your cold space is 80W fewer watts of energy you need to produce to heat the space. But in a hot space, it’s an extra 80W that needs to be removed.
Add to that all of the appliances in a home. It’s not unusual for a home to be drawing 100W of electricity just keep stuff powered on in standby, and that’s another 100W of “free” heating. All of this is before we get to big ticket items, like hobs, ovens, water heaters etc.
So cooling a living space is always more costly than heating a living space. Simply because all the waste energy created by people living in the space reduces the total heating requirement of the space, but equally increases the cooling requirement of that same space.
All of this is ignoring the fact that it’s easy to create a tiny personal heated environment around an individual (it’s called a woolly jumper). But practically impossible to create a cool individual environment around a person. So in cold spaces you don’t have to heat everything up to same temperature for the space to be perfectly liveable, but when cooling a space, you have to cool everything, regardless of if it’ll impact the comfort of the occupants.
> So cooling a living space is always more costly than heating a living space. Simply because all the waste energy created by people living in the space reduces the total heating requirement of the space, but equally increases the cooling requirement of that same space.
This simply is not true for a furnace or electric resistive heat.
My furnace produces 0.9W of heat for every 1W of energy input. More efficient ones do 0.98, the best you get with electric resistive heat is 1W.
On the other hand my air conditioner moves 3.5W of heat outside for every 1W of energy input.