Comment by xigency
There definitely seems to be a modern trend of over complication in physics along with the voodoo-like worship of math. Humbly enough, people have only come to understand the equations for an apple falling out of a tree within the last 500 years, and that necessitated the invention of Calculus.
What's more distressing than the insular knowledge cults of modern physics is the bizarre fixation on unfalsifiable philosophical interpretation.
That just makes it incomprehensible to outsiders when they quibble over the metaphors used to explain the equations that are used to guess what may happen experimentally. (Rather than admitting that any definition is an abstraction and any analogies or metaphors are merely pedagogical tools.)
My kneejerk reaction: Give me the equations. If they are too complicated give me a computer simulation that runs the equations. Now tell me what your experiment is and show me how to plug the numbers so that I may validate the theory.
If I wanted to have people wage war over my mind concerning what I should believe without evidence, I would turn back to religion rather than science.
Anyway, I hope this situation improves in the future. Maybe some virtual particle will appear that better mediates this field (physics).
Having studied undergraduate physics, I think this viewpoint is inverted from the realities of the matter. It is less that the math is complicated and more so these are the relevant tools invented for us to model the experimental results we obtain post discovery/formalization of SR/GR/Quantum experiences. There are computers that can run these simulations but they are infeasible to model large scale processes. That is the reason people are looking for more than numerical solutions to problems, but laws and tools that can simplify modeling large scale emergent behavior that it would be infeasible or unnecessarily complicated to do with numerical simulation. These tools are the more straightforward approach