Comment by mikepfrank
Comment by mikepfrank 5 days ago
Hi, someone pointed me at your comment, so I thought I'd reply.
First, the circuit techniques that aren't reversible aren't truly, fully adiabatic either -- they're only quasi-adiabatic. In fact, if you strictly follow the switching rules required for fully adiabatic operation, then (ignoring leakage) you cannot erase information -- none of the allowed operations achieve that.
Second, to say reversible operation "only saves an extra 20%" over quasi-adiabatic techniques is misleading. Suppose a given quasi-adiabatic technique saves 79% of the energy, and a fully adiabatic, reversible version saves you "an extra 20%" -- well, then now that's 99%. But, if you're dissipating 1% of the energy of a conventional circuit, and the quasi-adiabatic technique is dissipating 21%, that's 21x more energy efficient! And so you can achieve 21x greater performance within a given power budget.
Next, to say "resistive losses dominate the losses" is also misleading. The resistive losses scale down arbitrarily as the transition time is increased. We can actually operate adiabatic circuits all the way down to the regime where resistive losses are about as low as the losses due to leakage. The max energy savings factor is on the order of the square root of the on/off ratio of the devices.
Regarding "adiabatic circuits can typically only provide an order of magnitude power savings" -- this isn't true for reversible CMOS! Also, "power" is not even the right number to look at -- you want to look at power per unit performance, or in other words energy per operation. Reducing operating frequency reduces the power of conventional CMOS, but does not directly reduce energy per operation or improve energy efficiency. (It can allow you to indirectly reduce it though, by using a lower switching voltage.)
You are correct that adiabatic circuits can benefit from frequency scaling more than traditional CMOS -- since lowering the frequency actually directly lowers energy dissipation per operation in adiabatic circuits. The specific 4000x number (which includes some benefits from scaling) comes from the analysis outlined in this talk -- see links below - but we have also confirmed energy savings of about this magnitude in detailed (Cadence/Spectre) simulations of test circuits in various processes. Of course, in practice the energy savings is limited by the resonator Q value. And a switched-capacitor design (like a stepped voltage supply) would do much worse, due to the energy required to control the switches.
https://www.sandia.gov/app/uploads/sites/210/2023/11/Comet23... https://www.youtube.com/watch?v=vALCJJs9Dtw
Happy to answer any questions.
Thanks for the reply, was actually hoping you'd pop over here.
I don't think we actually disagree on anything. Yes, without reverse circuits you are limited to quasi-adiabatic operaton. But, at least in the architectures I'm familiar with (mainly PFAL), most of the losses are unarguably resistive. As I understand PFAL, it's only when the operating voltage of a given gate drops below Vth that the (macro) information gets lost and reversibility provides benefit, which is only a fraction of the switching cycle. At least for PFAL the figure is somewhere in the 20% range IIRC. (I say "macro" because of course the true energy of information is much smaller than the amounts we're talking about.)
The "20%" in my comment I meant in the multiplicative sense, not additive. I.e. going from 79% savings to 83.2%, not 99%. (I realize that wasn't clear.)
What I find interesting is reversibility isn't actually necessary for true adiabatic operation. All that matters is the information of where charge needs to be recovered from can be derived somehow. This could come from information available elsewhere in the circuit, not necessarily the subsequent computations reversed. (Thankfully, quantum non-duplication does not apply here!)
I agree that energy per operation is often more meaningful, BUT one must not lose sight of the lower bounds on clock speed imposed by a particular workload.
Ah thanks for the insight into the resonator/switched-cap tradeoff. Yes, capacitative switching designs which are themselves adiabatic I know is a bit of a research topic. In my experience the losses aren't comparable to the resistive losses of the adiabatic circuitry itself though. (I've done SPICE simulations using the sky130 process.)