Comment by colanderman
Comment by colanderman 5 days ago
PFAL has both a fully adiabatic and quasi-adiabatic configuration. (Essentially, the "reverse" half of a PFAL gate can just be tied to the outputs for quasi-adiabatic mode.) I've focused my own research on PFAL because it is (to my knowledge) one of the few fully adiabatic families, and of those, I found it easy to understand.
I'll have to check out 2LAL. I haven't heard of it before.
No, even with a fully adiabatic switched-capacitance driver I don't think those figures are possible. The maximum efficiency I believe is 1-1/n, n being the number of steps (and requiring n-1 capacitors). But the capacitors themselves must each be an order of magnitude larger than the adiabatic circuit itself. So it's a reasonable performance match for an adiabatic circuit running at "max" frequency, with e.g. 8 steps/7 capacitors, but 100x power reduction necessary to match a "slowed" adiabatic circuit would require 99 capacitors... which quickly becomes infeasible!
Yeah, 2LAL (and its successor S2LAL) uses a very strict switching discipline to achieve truly, fully adiabatic switching. I haven't studied PFAL carefully but I doubt it's as good as 2LAL even in its more-adiabatic version.
For a relatively up-to-date tutorial on what we believe is the "right" way to do adiabatic logic (i.e., capable of far more efficiency than competing adiabatic logic families from other research groups), see the below talk which I gave at UTK in 2021. We really do find in our simulations that we can achieve 4 or more orders of magnitude of energy savings in our logic compared to conventional, given ideal waveforms and power-clock delivery. (But of course, the whole challenge in actually getting close to that in practice is doing the resonant energy recovery efficiently enough.)
https://www.sandia.gov/app/uploads/sites/210/2022/06/UKy-tal... https://tinyurl.com/Frank-UKy-2021
The simulation results were first presented (in an invited talk to the SRC Decadal Plan committee) a little later that year in this talk (no video of that one, unfortunately):
https://www.sandia.gov/app/uploads/sites/210/2022/06/SRC-tal...
However, the ComET talk I linked earlier in the thread does review that result also, and has video.