Comment by mr_toad
Comment by mr_toad 3 days ago
The only real advantage is 24/7 power without having to use batteries (or some other power supply at night or when cloudy). The way solar prices are going the problem of suppling power when the sun isn’t visible is a real bottleneck.
For 24/7 solar... you are either in a sun synchronous orbit or in a very high orbit.
The sun synchronous are polar orbits ($$$) that are preferred for earth observation (so that the sun is casting the same shadows). As these are polar orbits, the satellite is not overhead all the time and getting a satellite into such an orbit takes a bit of work.
A SpaceX is at about $3k / kg to LEO. The numbers I see suggest a $20k / kg to a polar orbit.
The next option is being far enough out of the way that the earth's shadow isn't an issue. For that, instead of a 500 km sun synchronous orbit, you'd be going to 36,000 km orbit. This is a lot further from the surface, takes a lot more fuel... and it's a geostationary orbit.
However, as a geostationary orbit, these spots are valuable. Slots in this orbit are divided into slots.
https://www.astronomy.com/space-exploration/wealthy-nations-...
> There are only 1,800 geostationary orbital slots, and as of February 2022, 541 of them were occupied by active satellites. Countries and private companies have already claimed most of the unoccupied slots that offer access to major markets, and the satellites to fill them are currently being assembled or awaiting launch. If, for example, a new spacefaring nation wants to put a weather satellite over a specific spot in the Atlantic Ocean that is already claimed, they would either have to choose a less optimal location for the satellite or buy services from the country occupying the spot they wanted.
> Orbital slots are allocated by an agency of the United Nations called the International Telecommunication Union. Slots are free, but they go to countries on a first-come, first-served basis. When a satellite reaches the end of its 15- to 20-year lifespan, a country can simply replace it and renew its hold on the slot. This effectively allows countries to keep these positions indefinitely. Countries that already have the technology to utilize geostationary orbit have a major advantage over those that do not.
Furthermore, the "out of a nations control" - those slots are owned by nations. Countries would likely be very annoyed for someone to be putting satellites there without authorization. Furthermore, they only work with the countries on those areas. They also require spacing to ensure that you can properly point an antenna to that satellite.
Furthermore, geosynchronous orbits have a 0.5 second round trip lag. This could be a problem for data centers.
Misbehaving satellites in the geosynchronous orbit are also of concern ( https://en.wikipedia.org/wiki/Galaxy_15 ).
----
Putting things in these orbits is pricy. For LEO, you'd need a lot of them. For geosynchronous, the idea of servicing them is pretty much a "you can't do that" (in 10 - 20 years they use their last fuel and get pushed to a higher orbit and pretty much get forgotten about).
Satellites in geosynchronous orbit are things that need to be especially well behaved because any orbital debris in that area could really ruin everyone's day.
Compute in space doesn't make sense.