Comment by abalone
I am skeptical as well BUT on the cooling question, which is one of the main concerns we all seem to have, the article is doing a bit of an apples-to-oranges comparison between the ISS and a cluster of small satellites.
It cites the ISS's centralized 16kW cooling system which is for a big space station that needs to collect and shunt heat over a relatively large area. The Suncatcher prototype is puny in comparison: just 4 TPUs and a total power budget of ballpark 2kW.
Suncatcher imagines a large cluster of small satellites separated by optical links, not little datacenter space stations in the sky. They would not be pulling heat from multiple systems tens of meters away like on the ISS, which bodes well for simpler passive cooling systems. And while the combined panel surface area of a large satellite cluster would be substantial, the footprint of any individual satellite, the more important metric, would likely be reasonable.
Personally I am more concerned with the climate impact of launches and the relatively short envisioned mission life of 5 years. If the whole point is better sustainability, you can't just look at the dollar cost of launches that don't internalize the environmental externalities of stuff like polluting the stratosphere.
In theory rocket launches sound bad, with burning fuels all the way up to the top layers of the atmosphere, but it's not clear right away that we're significantly increasing the "burnt up stuff" vs say, the ~100 tons of meteorites that hit every night.
Arguments re: Methane as a non-renewable resource are of course right, except that we technically can synthesize methane from CO2 + electricity (e.g., terraform industries), but the pollution angle is presented as-is, without a systematic analysis, right?
What's the actual atmospheric burden here?
This essentially says "We dont know"
https://news.climate.columbia.edu/2025/03/04/rockets-affect-...