Comment by SabrinaJewson

Comment by SabrinaJewson 15 hours ago

4 replies

In type theory, all singleton types are isomorphic and have no useful distinguishing characteristics (indeed, this is true of all types of the same cardinality – and even then, comparing cardinalities is always undecidable and thus irrelevant at runtime). So your Nine type doesn’t really make sense, because you may as well just write Unit. In general, there is no amount of introspection into the “internal structure” of a type offered; even though parametricity does not hold in general (unless you postulate anticlassical axioms), all your functions that can run at runtime are required to be parametric.

Maxatar 14 hours ago

Being isomorphic is not the same as being identical, or substitutable for one another. Type theory generally distinguishes between isomorphism and definitional equality and only the latter allows literal substitution. So a Nine type with a single constructor is indeed isomorphic to Unit but it's not the same type, it carries different syntactic and semantic meaning and the type system preserves that.

Some other false claims are that type theory does not distinguish types of the same cardinality. Type theory is usually intensional not extensional so two types with the same number of inhabitants can have wildly different structures and this structure can be used in pattern matching and type inference. Cardinality is a set-theoretic notion but most type theories are constructive and syntactic, not purely set-theoretic.

Also parametricity is a property of polymorphic functions, not of all functions in general. It's true that polymorphic code can't depend on the specific structure of its type argument but most type theories don't enforce full parametricity at runtime. Many practical type systems (like Haskell with type classes) break it with ad-hoc polymorphism or runtime types.

aatd86 14 hours ago

How does it become Unit if it is an integer of value 9? Why would cardinalities be undecidable if they are encoded discretely in the type?

For instance, type Nine int = {9} would not be represented as 9. It would probably be a fat pointer. It is not just an int, it would not even have the same operations (9 + 9 is 18 which is an int but is not of type Nine, but that's fine, a fat pointer does not need to share the same set of operations as the value it wraps).

It could be seen as a refinement of int? I am not sure that it can truly be isomorphic? My suspicion was that it would only be somewhat isomorphic at compile time, for type checking, and if there is a mechanism for auto unwrapping of the value?

  • codebje 10 hours ago

    There's only one possible value of type Nine; there's only one possible value of type Unit. They're isomorphic: there's a pair of functions to convert from Nine to Unit and from Unit to Nine whose compositions are identities. Both functions are just constants that discard their argument un-inspected. "nineToUnit _ = unit" and "unitToNine _ = {9}".

    You've made up your language and syntax for "type Nine int = {9}" so the rules of how it works are up to you. You're sort of talking about it like it's a refinement type, which is a type plus a predicate over values of the type. Refinement types aren't quite dependent types: they're sort of like a dependent pair where the second term is of kind Proposition, not Type; your type in Liquid Haskell would look something like 'type Nine = Int<\n -> n == 9>'.

    Your type Nine carries no information, so the most reasonable runtime representation is no representation at all. Any use of the Nine boils down to pattern matching on it, and a pattern match on a Nine only has one possible branch, so you can ignore the Nine term altogether.

    • aatd86 7 hours ago

      Why doesn't it seem exactly true?

      It is an integer. It is in the definition. And any value should be equal to nine. By construction Nine could have been given the same representation as int, at first. Except this is not enough to express the refinement/proposition.

      One could represent it as a fat pointer with a space allocated to the set of propositions/predicates to check the value of.

      That allows to check for equality for instance.

      That information would not be discarded.

      This is basically a subtype of int.

      As such, it is both a dependent type and a refinement type. While it is true that not all refinement types are dependent types, because of cardinality.

      I think Maxatar response in the same thread puts it in words that are possibly closer to the art.