Comment by geoctl
Comment by geoctl 19 hours ago
While WireGuard makes every sense for an FPGA due to its minimal design, I wonder why there isn't much interest in using QUIC as a modern tunneling protocol, especially for corporate use cases. QUIC already provides an almost complete WireGuard-alternative via its datagrams that can be easily combined with TUN devices and custom authentication schemes (e.g. mTLS, bearer tokens obtained via OAuth2 and OIDC authentication, etc...) to build your own VPN. While I am not sure about performance, at least when compared to kernel-mode WireGuard, since QUIC is obviously a more complex state machine that's running in userspace and it depends on the implementation and optimizations offered by the OS (e.g. GRO/GSO), QUIC isn't just a yet another tunneling protocol, it actually offers lots of benefits such as working well with dynamic endpoints with DNS instead of just using static IP addrs, it uses modern TLSv1.3 and therefore it's compliant with FIPS for example, it uses AES which can be accelerated by the underlying hardware (e.g. AES-NI), it currently has implementations in almost every major programming language, it can work well in the future with proxies and load balancers, you can bring your own custom, more fine-grained authentication scheme (e.g. bearer tokens, mTLS, etc...), it masquerades as just another QUIC/HTTP3 traffic that's used by almost all major websites now and therefore less susceptible to dropping by any nodes in between, and other less obvious benefits such as congestion control and PMTUD.
Why would anyone want to use a complex kludge like QUIC and be at the mercy of broken TLS libraries, when Wireguard implementations are ~ 5k LOC and easily auditable?
Have all the bugs in OpenSSL over the years taught us nothing?