Comment by hamasho
Comment by hamasho 2 days ago
My theory is that as more people compete, the top candidates become those who are best at gaming the system rather than actually being the best. Someone has probably studied this. My only evidence is job applications for GAFAM and Tinder tho.
I've spent most of my career working, chatting and hanging out with what might be best described as "passionate weirdos" in various quantitative areas of research. I say "weirdos" because they're people driven by an obsession with a topic, but don't always fit the mold by having the ideal combination of background, credentials and personality to land them on a big tech company research team.
The other day I was spending some time with a researcher from Deep Mind and I was surprised to find that while they were sharp and curious to an extent, nearly every ounce of energy they expended on research was strategic. They didn't write about research they were fascinated by, they wrote and researched on topics they strategically felt had the highest probability getting into a major conference in a short period of time to earn them a promotion. While I was a bit disappointed, I certainly didn't judge them because they are just playing the game. This person probably earns more than many rooms of smart, passionate people I've been in, and that money isn't for smarts alone; it's for appealing to the interests of people with the money.
You can see this very clearly by comparing the work being done in the LLM space to that being done in the Image/Video diffusion model space. There's much more money in LLMs right now, and the field is flooded with papers on any random topic. If you dive in, most of them are not reproducible or make very questionable conclusions based on the data they present, but that's not of very much concern so long as the paper can be added to a CV.
In the stable diffusion world it's mostly people driven by personal interest (usually very non-commericial personal interests) and you see tons of innovation in that field but almost no papers. In fact, if you really want to understand a lot of the most novel work coming out of the image generation world you often need to dig into PRs made by an anonymous users with anime themed profile pic.
The bummer of course is that there are very hard limits on what any researcher can do with a home GPU training setup. It does lead to creative solutions to problems, but I can't help but wonder what the world would look like if more of these people had even a fraction of the resources available exclusively to people playing the game.