Comment by ModernMech
Comment by ModernMech 5 days ago
I'm thankful they included a compiled language for comparison, because most of the time when I see Python benchmarks, they measure against other versions of Python. But "fast python" is an oxymoron and 3.14 doesn't seem to really change that, which I feel most people expected given the language hasn't fundamentally changed.
This isn't a bad thing; I don't think Python has to be or should be the fastest language in the world. But it's interesting to me seeing Python getting adopted for a purpose it wasn't suited for (high performance AI computing). Given how slow it is, people seem to think there's a lot of room for performance improvements. Take this line for instance:
> The free-threading interpreter disables the global interpreter lock (GIL), a change that promises to unlock great speed gains in multi-threaded applications.
No, not really. I mean, yeah you might get some speed gains, but the chart shows us if you want "great" speed gains you have two options: 1) JIT compile which gets you an order of magnitude faster or 2) switch to a static compiled language which gets you two orders of magnitude faster.
But there doesn't seem to be a world where they can tinker with the GIL or optimize python such that you'll approach JIT or compiled perf. If perf is a top priority, Python is not the language for you. And this is important because if they change Python to be a language that's faster to execute, they'll probably have to shift it away from what people like about it -- that it's a dynamic, interpreted language good for prototyping and gluing systems together.
I've been writing Python professionally for a couple of decades, and there've only been 2-3 times where its performance actually mattered. When writing a Flask API, the timing usually looks like: process the request for .1ms, make a DB call for 300ms, generate a response for .1ms. Or writing some data science stuff, it might be like: load data from disk or network for 6 seconds, run Numpy on it for 3 hours, write it back out for 3 seconds.
You could rewrite that in Rust and it wouldn't be any faster. In fact, a huge chunk of the common CPU-expensive stuff is already a thin wrapper around C or Rust, etc. Yeah, it'd be really cool if Python itself were faster. I'd enjoy that! It'd be nice to unlock even more things that were practical to run directly in Python code instead of swapping in a native code backend to do the heavy lifting! And yet, in practice, its speed has almost never been an issue for me or my employers.
BTW, I usually do the Advent of Code in Python. Sometimes I've rewritten my solution in Rust or whatever just for comparison's sake. In almost all cases, choice of algorithm is vastly more important than choice of language, where you might have:
* Naive Python algorithm: 43 quadrillion years
* Optimal Python algorithm: 8 seconds
* Rust equivalent: 2 seconds
Faster's better, but the code pattern is a lot more important than the specific implementation.