Comment by mixedbit
Is π really a number or is it a computation? For example, fibbonaci(∞) is not a number, and π looks to be conceptually similar. Unlike fibonacci(∞), π has a limit, and we can approximate it with better and better precision, but in both cases the computation will never terminate
To answer your question you need to define what a number is to you. There are many different kinds of numbers, naturals, integers, rationals, irrationals, computable reals, reals, infinitesimals... Not even getting into complex, quaternions, octonions etc.
Is sqrt(2) a number to you ?
If you accept computable reals as numbers then \pi is definitely a number. So is the golden ratio.