Comment by srean
I always wonder what the Elements would have looked like had Euclid had included paper folding as a primitive.
Folds are powerful. One can trisect or n-sect any angle for finite n. One still needs the compass though for circle.
Straight edge
Compass
Nuesis
Paper folding
Makes for a very powerful tool set.
The Greeks were not adverse to studying topics outside of the classic axioms, for example neusis, conic sections, or Archimedes work on quadrature (which presaged calculus):
https://en.wikipedia.org/wiki/Neusis_construction
https://en.wikipedia.org/wiki/Conic_section
https://en.wikipedia.org/wiki/Quadrature_(mathematics)
https://en.wikipedia.org/wiki/Quadrature_of_the_Parabola
They just preferred the simpler axioms on grounds of aesthetic parsimony.
As far as I know, the ancient Greeks never thought to fold the paper. It has, however, been studied since the 1980's by modern mathematicians:
https://en.wikipedia.org/wiki/Huzita%E2%80%93Hatori_axioms
It can be used to trisecting an angle, an impossible construction with straightedge and compass:
https://www.youtube.com/watch?v=SL2lYcggGpc&t=185s
It's more powerful than compass and straight-edge constructions, but not by much. It essentially gives you cube roots in addition to square roots. You still need a completely different point of view to make the quantum leap the the real numbers, calculus, and limits:
https://en.wikipedia.org/wiki/Zermelo%E2%80%93Fraenkel_set_t...
https://en.wikipedia.org/wiki/Dedekind_cut
So ultimately I don't know if it would have changed the course of history that much.