Comment by openasocket
Comment by openasocket 2 days ago
I've worked almost exclusively on a large Golang project for over 5 years now and this definitely resonates with me. One component of that project is required to use as little memory as possible, and so much of my life has been spent hitting rough edges with Go on that front. We've hit so many issues where the garbage collector just doesn't clean things up quickly enough, or we get issues with heap fragmentation (because Go, in its infinite wisdom, decided not to have a compacting garbage collector) that we've had to try and avoid allocations entirely. Oh, and when we do have those issues, it's extremely difficult to debug. You can take heap profiles, but those only tell you about the live objects in the heap. They don't tell you about all of the garbage and all of the fragmentation. So diagnosing the issue becomes a matter of reading the tea leaves. For example, the heap profile says function X only allocated 1KB of memory, but it's called in a hot loop, so there's probably 20MB of garbage that this thing has generated that's invisible on the profile.
We pre-allocate a bunch of static buffers and re-use them. But that leads to a ton of ownership issues, like the append footgun mentioned in the article. We've even had to re-implement portions of the standard library because they allocate. And I get that we have a non-standard use case, and most programmers don't need to be this anal about memory usage. But we do, and it would be really nice to not feel like we're fighting the language.
I've found that when you need this it's easier to move stuff offheap, although obviously that's not entirely trivial in a GC language, and it certainly creates a lot of rough edges. If you find yourself writing what's essentially, e.g. C++ or Rust in Go, then you probably should just rewrite that part in the respective language when you can :)