Comment by johncolanduoni
Comment by johncolanduoni a day ago
This covers probably 90% of the usefulness of io_uring for non-niche applications. Its original purpose was doing buffered async file IO without a bunch of caveats that make it effectively useless. The biggest speed up I’ve found with it is ‘stat’ing large sets of files in the VFS cache. It can literally be 50x faster at that, since you can do 1000 files with a single systemcall and the data you need from the kernel is all in memory.
High throughput network usecases that don’t need/want AF_XDP or DPDK can get most of the speedup with ‘sendmmsg/recvmmsg’ and segmentation offload.
For TCP streams syscall overhead isn't a big issue really, you can easily transfer large chunks of data in each write(). If you have TCP segmentation offload available you'll have no serious issues pushing 100gbit/s. Also if you are sending static content don't forget sendfile().
UDP is a whole another kettle of fish, get's very complicated to go above 10gbit/s or so. This is a big part of why QUIC really struggles to scale well for fat pipes [1]. sendmmsg/recvmmsg + UDP GRO/GSO will probably get you to ~30gbit/s but beyond that is a real headache. The issue is that UDP is not stream focused so you're making a ton of little writes and the kernel networking stack as of today does a pretty bad job with these workloads.
FWIW even the fastest QUIC implementations cap out at <10gbit/s today [2].
Had a good fight writing a ~20gbit userspace UDP VPN recently. Ended up having to bypass the kernels networking stack using AF_XDP [3].
I'm available for hire btw, if you've got an interesting networking project feel free to reach out.
1. https://arxiv.org/abs/2310.09423
2. https://microsoft.github.io/msquic/
3. https://github.com/apoxy-dev/icx/blob/main/tunnel/tunnel.go