Comment by spwa4
No it does not. Against a huge state adversary like China it does not matter. They have satellites looking down so they can quickly locate any starlink users. And then ...
The only thing that could bypass is GPS + laser links (meaning physically aiming a laser both on the ground AND on a satellite). You cannot detect that without being in the direct path of the laser (though of course you can still see the equipment aiming the laser, so it doesn't just need to work it needs to be properly disguised). That requires coherent beams (not easy, but well studied), aimed to within 2 wavelengths of distance at 160km (so your direction needs to be accurate to 2 billionths of a degree, obviously you'll need stabilization), at a moving target, using camouflaged equipment.
This is not truly beyond current technology, but you can be pretty confident even the military doesn't have this yet.
The aim doesn't need to be that accurate. Laser beams diverge due to diffraction. You can't break the laws of physics - a non-divergent laser beam would need to be infinitely wide. A 1cm wide laser beam of 700nm light will have a divergence width of approximately asin(0.0000007/0.01) which is 0.004 degrees, which is 14 arcseconds, which is very easily aimable using off-the-shelf components. People get a tracking accuracy around 1 arcsecond using standard hobbyist telescope mounts.
However, this solution is going to stop working when a cloud drifts past.