Comment by rahen
Comment by rahen 2 days ago
No need for an RPi 5. Back in 1982, a dual or quad-CPU X-MP could have run a small LLM, say, with 200–300K weights, without trouble. The Crays were, ironically, very well suited for neural networks, we just didn’t know it yet. Such an LLM could have handled grammar and code autocompletion, basic linting, or documentation queries and summarization. By the late 80s, a Y-MP might even have been enough to support a small conversational agent.
A modest PDP-11/34 cluster with AP-120 vector coprocessors might even have served as a cheaper pathfinder in the late 70s for labs and companies who couldn't afford a Cray 1 and its infrastructure.
But we lacked both the data and the concepts. Massive, curated datasets (and backpropagation!) weren’t even a thing until the late 80s or 90s. And even then, they ran on far less powerful hardware than the Crays. Ideas and concepts were the limiting factor, not the hardware.
I think a quad-CPU X-MP is probably the first computer that could have run (not train!) a reasonably impressive LLM if you could magically transport one back in time. It supported a 4GB (512 MWord) SRAM-based "Solid State Drive" with a supported transfer bandwidth of 2 GB/s, and about 800 MFLOPS CPU performance on something like a big matmul. You could probably run a 7B parameter model with 4-bit quantization on it with careful programming, and get a token every couple seconds.