Comment by ikrima
Comment by ikrima 3 days ago
Hey! This is fantastic and actually ties in some very high disparate parts of math. Basically, reorient & reformulate all of math/epistomology around discrete sampling the continuum. Invert our notions of Aleph/Beth/Betti numbers as some sort of triadic Grothendieck topoi that encode our human brain's sensory instruments that nucleate discrete samples of continuum of reality (ontology)
Then every modal logic becomes some mapping of 2^(N) to some set of statements. The only thing that matters is how predictive they are with some sort of objective function/metric/measure but you can always induce an "ultra metric" around notions of cognitive complexity classes i.e. your brain is finite and can compute finite thoughts/second. Thus for all cognition models that compute some meta-logic around some objective F, we can motivate that less complex models are "better". There comes the ultra measure to tie disparate logic systems. So I can take your Peano Axioms and induce a ternary logic (True, False, Maybe) or an indefinite-definite logic (True or something else entirely). I can even induce bayesian logics by doing power sets of T/F. So a 2x2 bayesian inference logic: (True Positive, True Negative, False Positive, False Negative)
Fun stuff!
Edit: The technical tldr that I left out is unification all math imho: algebraic topology + differential geometry + tropical geometry + algebraic analysis. D-modules and Microlocal Calculus from Kashiwara and the Yoneda lemma encode all of epistemology as relational: either between objects or the interaction between objects defined as collision less Planck hyper volumes.
basically encodes the particle-wave duality as discrete-continuum and all of epistemology is Grothendieck topoi + derived categories + functorial spaces between isometry of those dual spaces whether algebras/coalgebra (discrete modality) or homologies/cohomologies (continuous actions)
Edit 2: The thing that ties everything together is Noether's symmetry/conserved quantities which (my own wild ass hunch) are best encoded as "modular forms", arithmetic's final mystery. The continuous symmetry I think makes it easy to think about diffeomorphisms from different topoi by extracting homeomorphisms from gauge invariant symmetries (in the discrete case it's a lattice, but in the continuous we'd have to formalize some notion of liquid or fluid bases? I think Kashiwara's crystal bases has some utility there but this is so beyond my understanding )
> Invert our notions of Aleph/Beth/Betti numbers as some sort of triadic Grothendieck topoi that encode our human brain's sensory instruments that nucleate discrete samples of continuum of reality (ontology)
There’s probably ten+ years of math education encoded in this single sentence?