Comment by amluto
> The two observers can't disagree on such matters!
Why not?
If a spaceship fell toward a black hole and, as it approached the event horizon, one observer saw it turn into a horse and the other saw it turn into a cat, that would be very strange indeed, and one would suspect at least one of the observers of being wrong.
But if one observer sees it fall through the event horizon and the other observer waits… and waits… and gets bored and starts doing some math and determines that they could spend literally forever and never actually observe the spacecraft falling through the event horizon, then what’s the inconsistency? You might say “well, the first observer could fire up their communication laser and tell the second observer that ‘yes, the spaceship fell in at such-and-such time’, and the second observer would now have an inconsistent view of the state of the universe”, but this isn’t actually correct: the first observer’s message will never reach the second observer!
> Why not?
Because that's not how relativity works! Two observers can disagree only on the order and relative timing of events, not what the events are or the total number of events. There are far more restrictions than that, but those are sufficient for my point.
The whole quantum information loss problem is just this, but dressed up in fancy terminology. It's the problem with black holes that the "number of things" (particles, events, whatever) is "lost" when matter falls into them.
The modern -- accepted -- resolution to this problem is that this information is not lost, preserving quantum numbers, etc...
How exactly this occurs is still being debated, but my point is that if you believe any variant of QM information preservation, then the only logically consistent view is that nothing can fall past an event horizon from any perspective, including the perspective of the infalling observers.
If you disagree and believe the out-dated GR model that an astronaut can't even tell[1] that they've crossed the event horizon, ask yourself this simple question: When does the astronaut experience this "non-event"[1]? Don't start with the mathematics! Instead, start with this simple thought experiment: The non-victim partner far away from the black hole holds up a light that blinks on an off once a second. The victim is looking outward and is watching the blinking speed up. How many blinks do they count at the time they cross the horizon?
Now think through the scenario again, but this time assume the spaceship turns the light off when they observe that the black hole has finished evaporating. When does the in-falling astronaut observe the blinking stop? Keep in mind that every "toy model" makes the simplification here that the blinking rate goes to infinity as the astronaut falls in! (I.e.: "They see the entire history of the universe play out." is a common quote)
[1] Isn't that a strong enough hint for everybody that there is no horizon!?