Comment by CodeMage

Comment by CodeMage 3 days ago

2 replies

> Answers like this are sort of what makes me wonder what most engineers are smoking when they think AI isn’t valuable.

Honestly, I wonder if I'm living in some parallel universe, because my experience is that "most engineers" are far from that position. The reactions I'm seeing are either "AI is the future" or "I have serious objections to and/or problems with AI".

If you're calling the latter group "the outright dismissal of AI", I would disagree. If I had to call it the outright dismissal of anything, it would be of AI hype.

> I also suspect people who level these criticisms have never really used a frontier LLM.

It's possible. At my workplace, we did a trial of an LLM-based bot that would generate summaries for our GitHub PRs. I have no idea whether it's a "frontier" LLM or not, but I came out of that trial equally impressed, disappointed, and terrified.

Impressed, because its summaries got so many details right. I could immediately see the use for a tool like that: even when the PR author provides a summary of the PR, it's often hard to figure out where to start looking at the PR and in which order to go through changes. The bulleted list of changes from the bot's summary was incredibly useful, especially because it was almost always correct.

Disappointed, because it would often get the most important thing wrong. For the very first PR that I made, it got the whole list of changes right, but the explanation of what the PR did was the opposite of the truth. I made a change to make certain behavior disabled by default and added an option to enable it for testing purposes, and the bot claimed that the behavior was impossible before this change and the PR made it possible if you used this option.

Terrified, because I can see how alluring it is for people to think that they can replace critical thinking with AI. Maybe it's my borderline burnout speaking, but I can easily imagine the future where the pressure from above to be more "efficient" and to reduce costs brings us to the point where we start trusting faulty AI and the small mistakes start accumulating to the point where great damage is done to millions of people.

> Even if the LLM never writes a line of code - this is still valuable, because helping humans understand software faster means you can help humans write software faster.

I have my doubts about this. Yes, if we get an AI that is reliable and doesn't make these mistakes, it can help us understand software faster, as long as we're willing to make the effort to actually understand it, rather than delegating to the AI's understanding.

What I mean by that is that there are different levels of understanding. How deep do you dive before you decide it's "deep enough" and trust what the AI said? This is even more important if you start also using the AI to write the code and not just read it. Now you have even less motivation to understand the code, because you don't have to learn something that you will use to write your own code.

I'll keep learning how to use LLMs, because it's necessary, but I'm very worried about what we seem to want from them. I can't think of any previous technological advance that aimed to replace human critical thinking and creativity. Why are we even pursuing efficiency if it isn't to give us more time and freedom to be creative?

doug_durham 3 days ago

The value is that it got the details correct as you admit. That alone is worth the price of admission. Even if I need to rewrite or edit parts it has saved me time, and has raised the quality of PRs being submitted across the board. The key point with these tools is *Accountability*. As an engineer you are still accountable for your work. Using any tool doesn't take that away. If the PR tool gets it wrong, and you still submit it, that on the engineer. If you have a culture of accountability, then there is nothing to be terrified of. Any by the way the most recent tools are really, really good at PRs and commit messages.

  • svieira 2 days ago

    Are you accountable for CPU bugs in new machines added to your Kubernetes fleet? The trusting-trust problem only works if there is someone to trust.