Comment by fmap
> The idea is, if we don't think of anything more efficient, we'll at least be able to simulate a cat, and then an idiot, and then Einstein, and then something smarter. And since we almost certainly will think of something more efficient than "simulate a human brain", we should expect superintelligence to come much sooner.
The problem with this argument is that it's assuming that we're on a linear track to more and more intelligent machines. What we have with LLMs isn't this kind of general intelligence.
We have multi-paragraph autocomplete that's matching existing texts more and more closely. The resulting models are great priors for any kind of language processing and have simple reasoning capabilities in so far as those are present in the source texts. Using RLHF to make the resulting models useful for specific tasks is a real achievement, but doesn't change how the training works or what the original training objective was.
So let's say we continue along this trajectory and we finally have a model that can faithfully reproduce and identify every word sequence in its training data and its training data includes every word ever written up to that point. Where do we go from here?
Do you want to argue that it's possible that there is a clever way to create AGI that has nothing to do with the way current models work and that we should be wary of this possibility? That's a much weaker argument than the one in the article. The article extrapolates from current capabilities - while ignoring where those capabilities come from.
> And, even if you think A or B are unlikely, doesn't it make sense to just consider the possibility that they're true, and think about how we'd know and what we could do in response, to prevent C or D?
This is essentially https://plato.stanford.edu/entries/pascal-wager/
It might make sense to consider, but it doesn't make sense to invest non-trivial resources.
This isn't the part that bothers me at all. I know people who got grants from, e.g., Miri to work on research in logic. If anything, this is a great way to fund some academic research that isn't getting much attention otherwise.
The real issue is that people are raising ridiculous amounts of money by claiming that the current advances in AI will lead to some science fiction future. When this future does not materialize it will negatively affect funding for all work in the field.
And that's a problem, because there is great work going on right now and not all of it is going to be immediately useful.
I think the idea with LLMs leading to AGI is more like:
Natural language is a fuzzy context aware state machine of some sorts that can theoretically represent any arbitrarily complex state in the outside world given enough high quality text.
And by reiterating and extrapolating the rules found in human communication an AI could by the sheer ability to simulate infinitely long discussions discover new things, given the ability to independently verify outcomes.