Comment by PollardsRho

Comment by PollardsRho 2 days ago

0 replies

It seems to me that much of recent AI progress has not changed the fundamental scaling principles underlying the tech. Reasoning models are more effective, but at the cost of more computation: it's more for more, not more for less. The logarithmic relationship between model resources and model quality (as Altman himself has characterized it), phrased a different way, means that you need exponentially more energy and resources for each marginal increase in capabilities. GPT-4.5 is unimpressive in comparison to GPT-4, and at least from the outside it seems like it cost an awful lot of money. Maybe GPT-5 is slightly less unimpressive and significantly more expensive: is that the through-line that will lead to the singularity?

Compare the automobile. Automobiles today are a lot nicer than they were 50 years ago, and a lot more efficient. Does that mean cars that never need fuel or recharging are coming soon, just because the trend has been higher efficiency? No, because the fundamental physical realities of drag still limit efficiency. Moreover, it turns out that making 100% efficient engines with 100% efficient regenerative brakes is really hard, and "just throw more research at it" isn't a silver bullet. That's not "there won't be many future improvements", but it is "those future improvements probably won't be any bigger than the jump from GPT-3 to o1, which does not extrapolate to what OP claims their models will do in 2027."

AI in 2027 might be the metaphorical brand-new Lexus to today's beat-up Kia. That doesn't mean it will drive ten times faster, or take ten times less fuel. Even if high-end cars can be significantly more efficient than what average people drive, that doesn't mean the extra expense is actually worth it.