Comment by Sharlin
Yes, but that can be better understood as the hypercube becoming more pointy, not the sphere. And it's true; the cube's vertices get arbitrarily far from the origin, while the centers of its faces stay at ±1.
There are other ways in which a hypersphere can be considered "pointy", though; for example, consider a point lying on the surface being moved some epsilon distance to a random direction. As the dimension increases, the probability that the point ends up inside the sphere approaches zero – the sphere spans a smaller and smaller fraction of the "sky".
Specifically, of course, d = sqrt(N), where N is dimension and d is distance of a vertex of the unit hypercube from the origin.