Comment by zmgsabst

Comment by zmgsabst 2 days ago

0 replies

> If you slice a 3d space through a hypersphere in 4d space, do you get a normal sphere? Probably.

Yep — and this will generally be the case, as the equation looks like: x1^2 + x2^2 + … + xn^2 = r^2. If you fix one dimension, you have a hyperplane perpendicular to that axis — and a sphere of one dimension lower in that hyperplane.

For four dimensions, you can sort of visualize that as x^2 + y^2 + z^2 + t^2 = r^2, where xyz are your normal 3D and t is time. From t=-r to t=r, you have it start as a point then spheres of growing size until you hit t=0, then the spheres shrink back to a point.