Comment by jvanderbot
Comment by jvanderbot 2 days ago
> which is just getting things done end-to-end as fast as possible, not careful at every step that we have no memory errors.
One horrible but fun thing a former professor of mine pointed out: If your program isn't going to live long, then you never have to deallocate memory. Once it exits, the OS will happily clean it up for you.
This works in C or perhaps lazy GC languages, but for stateful objects where destructors do meaningful work, like in C++, this is dangerous. This is one of the reasons I hate C++ so much: Unintended side effects that you have to trigger.
> Could "reference counting" be compiled into a debug/profiled build and then detect which regions of time we free things in before or after (there is a happens before relation with dropping out of scopes that reference counting needs to run) to detect where to insert frees?
This is what Rust does, kinda.
C++ also does this with "stack" allocated objects - it "frees" (calls destructor and cleans up) when they go out of scope. And in C++, heap allocated data (if you're using a smart pointer) will automatically deallocate when the last reference drops, but this is not done at compile time.
Those are the only two memory management models I'm familiar with enough to comment on.
There is this old chestnut about “null garbage collectors”:
https://devblogs.microsoft.com/oldnewthing/20180228-00/?p=98...
> This sparked an interesting memory for me. I was once working with a customer who was producing on-board software for a missile. In my analysis of the code, I pointed out that they had a number of problems with storage leaks. Imagine my surprise when the customers chief software engineer said "Of course it leaks". He went on to point out that they had calculated the amount of memory the application would leak in the total possible flight time for the missile and then doubled that number. They added this much additional memory to the hardware to "support" the leaks. Since the missile will explode when it hits its target or at the end of its flight, the ultimate in garbage collection is performed without programmer intervention.