Comment by Neywiny
Understanding that there's inherent bias by them being competitors of the other companies, but still this article seems to make some stretches. If you told me you had an 8% core defect rate reduced 100x, I'd assume you got to close to 99% enablement. The table at the end shows... Otherwise.
They also keep flipping between cores, SMs, dies, and maybe other block sizes. At the end of the day I'm not very impressed. They seemingly have marginally better yields despite all that effort.
I think you're missing the point. The comparison is not between 93% and 92%. The comparison is between what they're getting (93%) and what you'd get if you scaled up the usual process to the core size they're using (0%). They are doing something different (namely: a ~whole wafer chip) that isn't possible without massively boosting the intra-chip redundancy. (The usual process stops working once you no longer have any extra dies to discard.)
> Despite having built the world’s largest chip, we enable 93% of our silicon area, which is higher than the leading GPU today.
The important part is building the largest chip. The icing on the top is that the enablement is not lower. Which it would be without the routing-to-spare-cores magic sauce.
And the differing terminology is because they're talking about differing things? You could call an SM a core, but it kind of contains (heterogeneous) cores itself. (I've no idea whether intra-SM cores can be redundant to boost yield.) A die is the part you break off and build a computer out of, it may contain a bunch of cores, a wafer can be broken up into multiple dies but for Cerebras it isn't.
If NVIDIA were to go and build a whole-wafer die, they'd do something similar. But Cerebras did it and got it to work. NVIDIA hasn't gotten into that space yet, so there's no point in building a product that you can't sell to a consumer or even a data center that isn't built around that exact product (or to contain a Balrog).