Comment by NickHoff
Comment by NickHoff 3 days ago
Neat. What about power density?
An H100 has a TDP of 700 watts (for the SXM5 version). With a die size of 814 mm^2 that's 0.86 W/mm^2. If the cerebras chip has the same power density, that means a cerebras TDP of 37.8 kW.
That's a lot. Let's say you cover the whole die area of the chip with water 1 cm deep. How long would it take to boil the water starting from room temperature (20 degrees C)?
amount of water = (die area of 46225 mm^2) * (1 cm deep) * (density of water) = 462 grams
energy needed = (specific heat of water) * (80 kelvin difference) * (462 grams) = 154 kJ
time = 154 kJ / 39.8 kW = 3.9 seconds
This thing will boil (!) a centimeter of water in 4 seconds. A typical consumer water cooler radiator would reduce the temperature of the coolant water by only 10-15 C relative to ambient, and wouldn't like it (I presume) if you pass in boiling water. To use water cooling you'd need some extreme flow rate and a big rack of radiators, right? I don't really know. I'm not even sure if that would work. How do you cool a chip at this power density?
The enthalpy of vaporization of water (at standard pressure) is listed by Wikipedia[1] as 2.257 kJ/g, so boiling 462 grams would require an additional 1.04 MJ, adding 26 seconds. Cerebras claims a "peak sustained system power of 23kW" for the CS-3 16 Rack Unit system[2], so clearly the power density is lower than for an H100.
[1] https://en.wikipedia.org/wiki/Enthalpy_of_vaporization#Other... [2] https://cerebras.ai/product-system/