Comment by exikyut
Comment by exikyut 3 days ago
I've been attracted to this - along with 2D cellular automata - a bit like a moth to a flame for some time. I find the little machine visualisations mesmerising, the heavily parenthesized Greek representation charming (they look like standing orders written in an alien language, looking for all the world like space invaders) and the tiny code sizes magical.
But I can't quite wrap my mind around the core concepts and internalize them into a mental model. It's too different from the simple world of imperative C or scripting languages I guess I call home. So I'm left watching das blinkenlights from the outside, as my attention span chokes on the layers of computer science incorporated into typical explanations. *shrug*
I'd be very interested if anyone knows of an ELI5-style alternate path I could walk to break each of the concepts down one at a time. (I ask because I think this is (currently) the kind of thing I think ChatGPT would struggle to present as effectively as a human.)
The best way to wrap your mind around the core concept and internalize them into a mental model is writing an interpreter yourself. It's been abundantly clear to me since young that for anything involving math, you don't internalize it if you merely passively let someone else explain it, whether that's reading a textbook/blog or attending a professor's lecture or watching a YouTube video. You have to do the exercises.
Lambda calculus is the same. You can easily define the data structure to represent a program in untyped lambda calculus and then write an interpreter for it. Then go implement some interesting concepts such as the Y combinator or the Omega combinator. If you find lambda calculus too difficult to do things like arithmetic or linked lists, you don't have to stick with Church numerals or Scott encodings. Just introduce regular natural numbers and lists as ground types; when you later have a better understanding, write programs to transform regular numerals from and to Church numerals and bask in the fact that they are isomorphic.