Comment by cosmos0072
Comment by cosmos0072 4 days ago
I have a degree in theoretical physics, and also did research on general relativity.
The result is cool, but it's not directly applicable to the traditional (sci-fi) scenario "I travel to the past and meet myself / my parents / my ancestors"
The reason is simple: the authors suppose a CLOSED timelike curve, i.e. something like a circle, where you travel back in time and BECOME your younger self - which by the way only exists because you traveled back in time in the first place.
A slightly different scenario would be much more interesting, but my guess is that it's much harder to analyze:
a NEARLY closed timelike curve, which arrives from the past, coils around itself one or more times - like a coil, indeed - allowing causal interaction between the different spires (i.e. one can interact with its future self/selves and with its past self/selves), and finally the last spire leaves toward the future.
> The reason is simple: the authors suppose a CLOSED timelike curve, i.e. something like a circle, where you travel back in time and BECOME your younger self
Exactly. This part of the paper is not really surprising or newsworthy. If you apply periodic boundary conditions, you get periodicity, duh. In the case of CTCs, this has been known for a long time[0].
> A slightly different scenario would be much more interesting, but my guess is that it's much harder to analyze: […]
Agreed. The only result I'm aware of in this context is a paper from the 90s by Echeverria, Klinkhammer, and Thorne about a thought experiment (Polchinski's Paradox) involving a billard ball entering a wormhole and colliding with its past self. Wikipedia[0] gives a good overview of the result.
[0]: https://en.m.wikipedia.org/wiki/Novikov_self-consistency_pri...