Comment by bayindirh
What I see with CoW filesystems is, when you force the FS to sync a lot (like apt does to keep immunity against power losses to a maximum), the write performance slouches visibly. This also means that when you're writing a lot of small files with a lot of processes and flood the FS with syncs, you get the same slouching, making everything slower in the process. This effect is better controlled in simpler filesystems, namely XFS and EXT4. This is why I keep backups elsewhere and keep my single disk rootfs on "simple" filesystems.
I'll be installing a 2 disk OpenZFS RAID1 volume on a SBC for high value files soon-ish, and I might be doing some tests on that when it's up. Honestly, I don't expect stellar performance since I'll be already putting it on constrained hardware, but let you know if I experience anything that doesn't feel right.
Thanks for the doc links, I'll be devouring them when my volume is up and running.
Where do you prefer your (bug and other) reports? GitHub? E-mail? IP over Avian Carriers?
Heavy synchronous IO from incredibly frequent fsync is a weak point. You can make it better using SLOG devices. I realize what I am about to say is not what you want to hear, but any application doing excessive fsync operations is probably doing things wrong. This is a view that you will find prevalent among all filesystem developers (i.e. the ext4 and XFS guys will have this view too). That is because all filesystems run significantly faster when fsync() is used sparingly.
In the case of APT, it should install all of the files and then call sync() once. This is equivalent of calling fsync on every file like APT currently does, but aggregates it for efficiency. The reason APT does not use sync() is probably a portability thing, because the standard does not require sync() to be blocking, but on Linux it is:
https://www.man7.org/linux/man-pages/man2/sync.2.html
From a power loss perspective, if power is lost when installing a package into the filesystem, you need to repair the package. Thus it does not really matter for power loss protection if you are using fsync() on all files or sync() once for all files, since what must happen next to fix it is the same. However, from a performance perspective, it really does matter.
That said, slow fsync performance generally is not an issue for desktop workloads because they rarely ever use fsync. APT is the main exception. You are the first to complain about APT performance in years as far as I know (there were fixes to improve APT performance 10 years ago, when its performance was truly horrendous).
You can file bug reports against ZFS here:
https://github.com/openzfs/zfs
I suggest filing a bug report against APT. There is no reason for it to be doing fsync calls on every file it installs in the filesystem. It is inefficient.