Comment by LtdJorge
There is no way that a CoW filesystem with parity calculations or striping is gonna beat XFS on multiple disks, specially on high speed NVMe.
The article provides great insight into optimizing ZFS, but using an EBS volume as store (with pretty poor IOPS) and then giving the NVMe as metadata cache only for ZFS feels like cheating. At the very least, metadata for XFS could have been offloaded to the NVMe too. I bet if we store set XFS with metadata and log to a RAMFS it will beat ZFS :)
L2ARC is a cache. Cache is actually part of its full name, which is Level 2 Adaptive Replacement Cache. It is intended to make fast storage devices into extensions of the in memory Adaptative Replacement Cache. L2ARC functions as a victim cache. While L2ARC does cache metadata, it caches data too. You can disable the data caching, but performance typically suffers when you do. While you can put ZFS metadata on a special device if you want, that was not the configuration that Percona evaluated.
If you do proper testing, you will find ZFS does beat XFS if you scale it. Its L2ARC devices are able to improve IOPS of storage cheaply, which XFS cannot do. Using a feature ZFS has to improve performance at price point that XFS cannot match is competition, not cheating.
ZFS cleverly uses CoW in a way that eliminates the need for a journal, which is overhead for XFS. CoW also enables ZFS' best advantage over XFS, which is that database backups on ZFS via snapshots and (incremental) send/recv affect system performance minimally where backups on XFS are extremely disruptive to performance. Percona had high praise for database backups on ZFS:
https://www.percona.com/blog/zfs-for-mongodb-backups/
Finally, there were no parity calculations in the configurations that Percona tested. Did you post a preformed opinion without taking the time to actually understand the configurations used in Percona's benchmarks?